Journal of Physical Chemistry B, Vol.105, No.28, 6598-6610, 2001
Protonic defects in hydrogen bonded liquids: Structure and dynamics in ammonia and comparison with water
The structural, dynamical, and electronic properties of ionic defects in liquid ammonia at 260 K created by the addition or removal of a proton have been studied using the method of ab initio molecular dynamics. These protonic defects correspond to the ammonium (NH4+) and amide (NH2-) ions in the liquid and are the analogues of the H3O1 and OH- ions in water. For this reason, direct comparison between the protonic defects in ammonia and those in water can be made. In particular, it is found that the NH4+ exhibits a characteristic cationic solvation pattern, in which it donates four hydrogen bonds to neighboring ammonia molecules, giving it a coordination number of 4. The NH2- ion is found to have a coordination number between 7 and 8 in liquid ammonia, a number higher than would be expected based on the number of hydrogen bonds it can accept and donate. It is found that about 40% of this is due to hydrogen bonding but that these hydrogen bonds are all accepted by the amide nitrogen. Moreover, the hydrogen bonds are often arranged in a planar configuration (perpendicular to the C-2 axis of the amide), a solvation pattern also exhibited by OH-in water. The rationale for the high coordination of NH2- is found to differ markedly from that which emerges from interpretation of spectral data. Unlike H3O+ and OH- in water, no proton transfer is exhibited in either the NH4+ system or the NH2- system. The results presented here lead to a possible explanation for the lack of structural diffusion. Nevertheless, the solvation structures formed by the NH4+ and NH2- ions in ammonia and their associated electronic properties possess many similarities with the water ions in water, and from the studies performed here, a number of important patterns begin to emerge that may be applicable to protonic defects in other hydrogen-bonded liquids.