화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.104, No.14, 3067-3077, 2000
Turnover rate, reaction order, and elementary steps for the hydrodechlorination of chlorofluorocarbon compounds on palladium catalysts
The rates of hydrodechlorination catalyzed by Pd supported on carbon for four chlorofluorocarbons spanned a range of 7 orders of magnitude. The rates scaled up to the bond strength of the carbon-chlorine bond for the gas-phase reactant. This finding demonstrates that the rate-determining step involves the scission of the C-Cl bond and suggests, through Polanyi and linear free-energy relationships, that rates for other compounds can be estimated if the C-Cl bond strength is known. The reaction orders for the most abundant products are approximately first-order for the chlorine-containing compound, half-order in H-2, and inverse first-order in HCl. The reaction steps consistent with these orders include a rate-determining step involving the adsorption of the chlorofluorocarbon to a single site (which could be a single surface palladium atom) and equilibrated steps between gas-phase H2, gas-phase HCl, and adsorbed hydrogen and chlorine atoms. The rates on the supported catalysts are comparable to the ones reported before on a Pd foil, indicating that the support does not play a role in the reaction. The product distribution is independent of conversion, implying that the various products are formed from a single visit of the reactant on the surface and not from readsorption of gas-phase products. The four compounds studied were chloropentafluoroethane (C-3-CF2Cl), 2-chloro-1,1,1,2-tetrafluoroethane (CF3-CFClH), 1,1-dichlorotetrafluoroethane (CF3-CFCl2), and 1, 1, 1-trichloro-2,2,2-trifluoroethane (CF3-CCl3).