화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.8, 841-845, December, 2001
천연망간광석과 암모니아를 이용한 질소산화물의 저온 선택적 촉매 환원 특성
The Characteristic of Selective Catalytic Reduction of Nitrogen Oxides over Natural Manganese Ore with NH3 at Low Temperature
E-mail:
초록
저온 영역 (110 ~ 220 ℃)에서 천연망간광석을 이용한 질소산화물의 선택적 촉매 환원 특성에 대하여 연구하였다. 천연망간광석은 200 ℃이하의 저온 영역에서 95% 이상의 우수한 탈질 효율을 보였다. 미반응 암모니아 배출은 NH3/NOx 몰비가 증가하고 온도가 감소할수록 증가하였으며, NO2 발생은 암모니아 배출과 반대의 현상을 보였다. NO2는 NO가 촉매 표면에 흡착된 후 산화되어 생성될 수 있다. 이러한 촉매 표면에 생성된 NO2와 흡착된 암모니아가 1:2의 반응을 하기 때문에 NH3/NOx 몰비 1.0 이상에서도 미반응 암모니아의 배출이 없었다. 이러한 결과로부터 저온 SCR 특성인 암모니아 과소비와 NO2 생성을 설명할 수 있다.
Using natural manganese ore as the catalyst at low temperature (110 ~ 220 ℃), the selective catalytic reduction of NOx (NO + NO2) with ammonia was investigated. Reduction of NOx was above 95% at temperature below 200 ℃. The unreacted ammonia increased with increased NH3/NOx mole ratio and with decreased temperature. The generation of NO2 had an inverse relationship with the liberated moles of NH3. NO2 formed through the oxidation of NO that was adsorbed onto the surface of catlayst. Since 1 mole on NO2 reacted with 2 moles of ammonia, the unreacted ammonia was not observed even at the mole ratio of NH3/NOx greater than 1.0. This explains the overconsumption of ammonia and the formation of NO2 in SCR(selective catalytic reaction) at low temperature.
  1. Bosch H, Jassen F, Catal. Today, 2(4), 369 (1988) 
  2. Sloss LL, Hjakmasson AK, Soud HN, Cambell LM, Stome DK, Shareef GS, Emmel T, Maibodi M, Livemgood CD, Markvssen J, "Nitrogen Oxides Control Technology Fact Book," U.S.A. (1992)
  3. Ertl G, Knozinger H, Weitcamp J, "Handbook of Heterogeneous Catalysis," 4, VCH Ltd., Germany (1997)
  4. Blanco J, Avila P, Suarez S, Martin JA, Knapp C, Appl. Catal. B: Environ., 28(3-4), 235 (2000) 
  5. Kapteijn F, Vanlangeveld AD, Moulijn JA, Andreini A, Vuurman MA, Turek AM, Jehng JM, Wachs IE, J. Catal., 150(1), 94 (1994) 
  6. Kijlstra WS, Brands DS, Poels EK, Bliek A, J. Catal., 171(1), 208 (1997) 
  7. Kijlstra WS, Brands DS, Smit HI, Poels EK, Bliek A, J. Catal., 171(1), 219 (1997) 
  8. Yamashita T, Vannice A, J. Catal., 163(1), 158 (1996) 
  9. Stobbe ER, de Boer BA, Geus JW, Catal. Today, 47(1-4), 161 (1999) 
  10. Baller JC, Emeleus HJ, Nyholm RS, Trotman-Dickemson AF, "Comprehensive Inorganic Chemistry," 3, Pergamon Press, 771 (1976)
  11. Busca G, Lietti L, Ramis G, Berti F, Appl. Catal. B: Environ., 18(1-2), 1 (1998) 
  12. Pearson IM, Ryu H, Wong WC, Nobe K, Ind. Eng. Chem. Res. Dev., 22, 381 (1983) 
  13. Kato A, Matsuda S, Nakajima F, Watanabe Y, J. Phys. Chem., 85, 1710 (1981) 
  14. Hirsch PM, Environ. Prog., 1, 27 (1982)
  15. Jeong SK, Ph.D. Dissertation, Korea Univ., Seoul, Korea (2000)