Journal of the American Chemical Society, Vol.122, No.17, 4029-4031, 2000
A bimetallic system for the catalytic hydroxylation of remote primary C-H bonds in functionalized organics using dioxygen
In a mixture of trifluoroacetic acid and water, the combination of metallic palladium and copper chloride catalyzes the hydroxylation of remote primary C-H bonds of a variety of acids, alcohols, and aliphatic halides, in the presence of carbon monoxide and dioxygen. Experiments suggest that the principal role of metallic palladium is to generate hydrogen peroxide in situ and that the species responsible for the remote hydroxylation of the substrate by hydrogen peroxide is copper chloride. The unusual preference for the catalytic hydroxylation of primary C-H bonds was also found in an experiment involving competition between ethane and either cumene or p-isopropylbenzoic acid: even though the solution concentration of ethane was significantly lower than the competing substrate, the vast majority of the oxidation product (ethanol) was derived from ethane. In the reactions studied, acetic acid and formic acid were formed through C-C cleavage steps. An examination of the site of C-C cleavage in propionic acid indicated that both C-C bonds were being broken.