화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.123, No.17, 4049-4061, 2001
Probing molecular conformations with electron momentum spectroscopy: The case of n-butane
High-resolution (e,2e) measurements of the valence electronic structure and momentum-space electron density distributions of n-butane have been exhaustively reanalyzed in order to cope with the presence of two stable structures in the gas phase, namely the all-staggered and gauche conformers. The measurements are compared to a series of Boltzmann-weighted simulations based on the momentum-space form of Kohn-Sham (B3LYP) orbital densities, and to ionization spectra obtained from high-level [ADC(3)] one-particle Green's Function calculations. Indubitable improvements in the quality of the simulated (e,2e) ionization spectra and electron momentum profiles are seen when the contributions of the gauche form of n-butane are included. Both the one-electron binding energies and momentum distributions consistently image the distortions and topological changes that molecular orbitals undergo due to torsion of the carbon backbone, and thereby exhibit variations which can be traced experimentally. With regard to the intimate relation of (e,2e) cross sections with orbital densities, electron momentum spectroscopy can therefore be viewed as a very powerful, but up to now largely unexploited, conformational probe. The study also emphasizes the influence of thermal agitation in photoionization experiments of all kind.