화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.123, No.30, 7414-7422, 2001
MD simulations of homomorphous PNA, DNA, and RNA single strands: Characterization and comparison of conformations and dynamics
MD simulations of homomorphous single-stranded PNA, DNA, and RNA with the same base sequence have been performed in aqueous solvent. For each strand two separate simulations were performed starting from a (i) helical conformation and (ii) random coiled state. Comparisons of the simulations with the single-stranded helices (case i) show that the differences in the covalent nature of the backbones cause significant differences in the structural and dynamical properties of the strands. It is found that the, PNA strand maintains its nice base-stacked initial helical structure throughout the 1.5-ns MD simulation at 300 K, while DNA/RNA show relatively larger fluctuations in the structures with a few local unstacking events during -ns MD simulation each. It seems that the weak physical coupling between the bases and the backbone in PNA causes a loss of correlation between the dynamics of the bases and the backbone compared to the DNA/RNA and helps maintain the base-stacked helical conformation. The global flexibility of a single-stranded PNA helix was also found to be lowest, while RNA appears to be the most flexible single-stranded helix. The sugar pucker of several nucleotides in single-stranded DNA and RNA was found to adopt both C2'-endo and C3'-endo conformations for significant times. This effect is more pronounced for single strands in completely coiled states. The simulations with single-stranded coils as the initial structure also indicate that a PNA can adopt a more compact globular structure, while DNA/RNA of the same size adopts a more extended coil structure. This allows even a short PNA in the coiled state to form a significantly stable nonsequentially base-stacked globular structure in solution. Due to the hydrophobic nature of the PNA backbone, it interacts with surrounding water rather weakly compared to DNA/RNA.