Journal of the American Chemical Society, Vol.123, No.34, 8260-8270, 2001
First direct structural comparison of complexes of the same metal fragment to ketenes in both C,C- and C,O-bonding modes
Using a series of Ir(I) and Rh(I) ketene complexes, conclusions about the structure and bonding of complexes of the fundamentally important ketene ligand class are reached. In a unique comparison of X-ray structures of the same metal fragment to ketenes in both the eta (2)-(C,C) and the eta (2)-(C,O) binding mode, the Ir-Cl bond distances in complexes of trans-Cl(Ir)[P(i-Pr)(3)](2) to phenylketene [4, eta (2)-(C,C)] and diphenylketene [2a, eta (2)-(C,O)] are 2.371(3) and 2.285(2) Angstrom, respectively. This would be consistent with greater trans influence of a ketene ligand bound to a metal through its C double bondC bond than one connected by its C double bondO bond. Back-bonding of Ir(I) and Rh(I) to diphenylketene was assessed using trans-CI(M)[P(i-Pr)(3)](2)[eta (2)-(C,O)-diphenylketene] (2a and 2d). Most bond lengths and angles are identical, but slightly greater back-bonding by Ir(l) is suggested by the somewhat greater deformation of the ketene C double bondC double bondO system [C-C-O angles are 136.6(4) and 138.9(4) in the Ir and Rh cases 2a and 2d, respectively]. Syntheses of new labeled ketenes Ph2C double bond C-13 double bondO and Ph2C double bondC double bond O-18 and their Ir(I) and Rh(I) complexes are reported, along with the generation of an Ir(l) complex of PhCH double bond C-13 double bondO. The effects of isotopic substitution on infrared absorption data for ketene complexes are presented for the first time. Preliminary normal coordinate mode analysis allowed definitive assignment of absorptions ascribed to the C-O stretching frequencies of coordinated ketenes, which are near the absorptions for aromatic ring systems commonly found as substituents on ketenes. For free diphenylketene and four of its complexes and a phenylketene complex characterized by X-ray diffraction, the magnitude of the C-13-C-13 coupling between the two ketene carbons is correlated to carbon-carbon bond distance.