화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.7, 800-805, November, 2001
γ-선 조사에 의한 LDPE/EVA 블랜드의 가교특성에 관한 연구
Study on the Crosslinking Characteristics of LDPE/EVA Blends by γ-ray Irradiation
E-mail:
초록
본 연구에서는 저밀도 폴리에틸렌(LDPE) 수지의 γ-선 조사에 의한 가교반응에서 에틸렌 초산비닐 공중합체(EVA)와 가교제 첨가에 따른 가교율 향상 효과를 연구하였다. LDPE와 EVA의 비율을 변화시켜 혼합하고, 130 ℃의 금형에서 시트형태로 제작하였다. γ-선은 질소분위기에서 50부터 150kGy까지 조사하였다. 이렇게 제작한 시편에 대해 γ-선 조사선량, EVA의 종류 그리고 LDPE/EVA 조성비율에 따른 가교율 변화를 조사하였으며 가교에 따른 기계적 특성, 열안정성 및 결정화도의 변화도 평가하였다. 그 결과 γ-선 조사선량과 EVA함량의 증가 그리고 가교제가 첨가되면 가교율은 상승하였다. 그것과 비례적으로 물리적 특성과 열적인 특성도 개선되었다. 그리고 γ-선 조사에 의해서 수지의 겔화율이 증가하면 결정화도는 감소하였다.
In this study, effects of γ-irradiation on the crosslinking of low density polyethlyene(LDPE) containing poly(ethylene-co-vinyl acetate) (EVA) and crosslinking agents were investigated. The LDPE/EVA resin blended with various LDPE/EVA ratio and crosslinking agents was molded by a hot press into a sheet at 130 ℃. γ-Irradiation was conducted at 50 to 150 kGy in nitrogen. The change in crosslinking percentage in these specimens was investigated according to irradiation dose, type of EVA resin, and LDPE/EVA ratio. The mechanical property, thermal property, and change in crystallinity of these specimens with irradiation were also investigated. It was found that the degree of crosslinking of the irradiated specimens increased with increasing irradiation dose and EVA content as well as addition of the crosslinking agents. The mechanical properties and thermal properties of specimens improved in proportion to the increased degree of crosslinking. The crystallinity of original resins and blends decreased with increased crosslinking density.
  1. Mullins L, Rubber Dev., 31, 92 (1978)
  2. Fisher W, U.S. Patent, 3,835,201 (1972)
  3. Coran AY, Patel R, Rubber Chem. Technol., 56, 1045 (1983)
  4. Legge NR, Holden G, Schroeder HE, "Thermoplastic Elastomers," Hanser, Munich, Vienna, New York (1987)
  5. Spenadel L, Smith W, Murphy J, Crosslinkable EPDM. Rubber Age, 107, 41 (1975)
  6. Studer N, Int. J. Electron Beam Gamma Radiat. Proc., 1, 14 (1988)
  7. Woods R, Pikov A, "Applied Radiation Chemistry; Radiation Processing" Wiley, New York (1994)
  8. Jones D, Ellis J, "Polymer Products-Design Materials and Processing," Chapman & Hall, London (1986)
  9. Datta S, Chaki T, Tikku V, Pradhan N, Radiat. Phys. Chem., 50, 399 (1997) 
  10. Waldron R, Mcrae H, Madison, Radiat. Phys. Chem., 25, 843 (1985) 
  11. Handlos V, Radiat. Phys. Chem., 14, 721 (1979) 
  12. Chattopadhyay S, Chaki T, Bhowmick A, J. Appl. Polym. Sci., 79(10), 1877 (2001) 
  13. Mateev M, Karageorgiev S, Radiat. Phys. Chem., 51, 205 (1998) 
  14. Suarez JM, Mano E, Pereira R, Polym. Degrad. Stabil., 69, 217 (2000) 
  15. Hutzler BW, Machado LD, Villavicencio AL, Lugao AB, Radiat. Phys. Chem., 57, 431 (2000) 
  16. Jamaliah S, Sharif SA, Kamaruddin H, Radiat. Phys. Chem., 58, 191 (2000) 
  17. Martinez ME, Vera R, Radiat. Phys. Chem., 45, 93 (1995) 
  18. Kumar S, Pandya MV, J. Appl. Polym. Sci., 64(5), 823 (1997) 
  19. Charlesby A, "Atomic Radiation and Polymers," Pergamon Press, Oxford (1960)
  20. Kang PH, Nho YC, J. Korean Nucl. Soc., 32, 2 (2001)