화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.7, 755-760, November, 2001
펜톤반응에서 pH의 변화에 따른 산화 및 환원반응 메커니즘
The Mechanisms of Oxidation and Reduction Under Various pH Regimes in Fenton's Reaction
E-mail:
초록
1-핵산올과 사염화탄소를 이용하여 펜톤반응내 산화 및 환원 메커니즘을 조사하고자 pH를 3에서 12까지 변화를 두면서 과산화수소의 농도변화에 따른 유기물질의 분해율을 측정하였다. 1-헥산올의 분해율은 pH가 증가함에 따라 급격하게 감소하는 경향을 보였는데 pH 3에서 1470 mM 과산화수소를 주입한 결과 30 min 동안 99.9%의 제거율을 보였으며 pH 12에서는 5%의 제거율을 보였다. 반면 사염화탄소의 경우 pH가 3에서 5로 증가함에 따라 95%에서 70%로 감소하는 경향을 보였으며 pH가 5에서 12로 증가함에 따라 제거율이 다시 95%로 증가하는 결과를 보였다. 펜톤반응에서 hydroxylradical (OH·)및 환원제의 발생을 알아보기 위해서 pH 3과 9에서 여러가지 스캐빈저를 적용한 실험을 실시하였다. 1-헥산올의 분해는 OH·에 의한 산화반응으로 사염화탄소의 분해반응은 superoxide radical (O2(-)·)과 hydroperoxide anion (OOH(-))에 의한 환원작용으로 설명되어질 수 있다. 이러한 결과는 펜톤반응이 산화 및 환원반응이 공존하는 반응임을 나타내고 있다.
The mechanisms of oxidation and reduction in Fenton's reagent were investigated using 1-hexanol and carbon tetrachloride (CT). Degradation of these compounds was investigated using different concentrations of hydrogen peroxide (2.94 mM ~ 1470 mM) at 1 mM concentration of ferric sulfate by varying pH from 3 to 12. The results showed that as pH was increased from 3 to 5, 7, 9, and 12, the degradation of 1-hexanol decreased significantly. Within 30 min (with 1470 mM of H2O2) of reaction time, decomposition of 1-hexanol was 99.9% at pH 3 ; however, only 5% was observed at pH 12. Carbon tetrachloride degradation showed different result; with 1470 mM of H2O2, 95% of initial CT concentration was decomposed at pH 3, but only 70% decomposed at pH 5. When pH was raised to 12, CT degradation reached up to 95% of the initial concentration. Furthermore, competition reactions were conducted at pH 3 and pH 9 to verify the formation of hydroxyl radical and reductants in Fenton's reagent. It was concluded that hydroxyl radical was the primary oxidant for the degradation of 1-hexanol, whereas in the degradation of CT, not the hydroxyl radical, but the reductants, superoxide radical and hydroperoxide anion were involved. This study indicates that Fenton reaction is a co-existing process of oxidative-reductive reaction.
  1. Tyre BW, Watts RJ, Miller GC, J. Environ. Qual., 20, 483 (1991)
  2. Leung SW, Watts RJ, Miller GC, J. Environ. Qual., 21, 377 (1992)
  3. Harber F, Weiss J, The catalytic decomposition of Hydrogen peroxide by iron salts, Proc. Royal Soc. London Serv. A., 147, 332 (1934)
  4. Haag WR, David YC, Environ. Sci. Technol., 26, 1005 (1992) 
  5. Martensand DA, Frankenberger WT, J. Soil Contamination, 4, 1 (1995)
  6. Potter FJ, Roth JA, Haz. Waste Haz. Mat., 10, 151 (1993)
  7. Milleer CM, Valentine RL, Water Res., 29, 2353 (1995) 
  8. Poupko R, Rosenthal L, J. Phys. Chem., 77, 1722 (1973) 
  9. Bielski BH, Shiue GG, Bajuk S, J. Phys. Chem., 88, 830 (1980) 
  10. Merenyi G, Lind J, Eriksen TE, J. Phys. Chem., 88, 2320 (1984) 
  11. Al-Hayek N, Dore M, Water Res., 24, 973 (1990) 
  12. Watts RJ, Udell MD, Rauch PA, Haz. Waste Haz. Mat., 7, 335 (1990)
  13. Gallard H, deLaat J, Legube B, Water Res., 13, 2929 (1999) 
  14. Uri N, Chem. Rev., 50, 373 (1952)
  15. Watts RJ, Bottenbergs BC, Hess TF, Jensen MD, Teel AL, Environ. Sci. Technol., 33, 3432 (1998) 
  16. Barb WG, Baxendale JH, George P, Hargrave R, Trans Faraday Soc., 47, 591 (1951)