화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.5, 545-551, October, 2001
테레프탈산과 에틸렌 글리콜로부터 올리고머 제조를 위한 환형 반응기 모델
A Loop Reactor Models in the Continuous Process for the Oligomer Formation from Terephthalic Acid and Ethylene Glycol
E-mail:
초록
PET제조를 위한 테레프탈산과 에틸렌 글리콜간의 직접 에스테르화 반응을 위한 환형 반응기 모델을 개발하였고 실제공정으로부터 얻은 운전자료에 의해 타당성을 입증하였다. 여러 설계 및 운전 변수 즉 환류비, 열교환기와 반응기의 체류시간비, 원료유입속도 및 반응온도가 에스테르화 반응률, 중합도, DEG농도 및 응축물 유출속도 등에 미치는 영향을 살펴보았다. 총체류시간에 대한 반응기의 체류시간비가 크고 환류비가 낮을 경우 에스테르화 반응률 및 중합도가 향상되고 DEG함량은 감소하였다. 에스테르화 반응률 및 중합도를 높이기 위해서는 환류비와 체류시간비를 동시에 고려해야 한다. 열교환기로 유입되는 반응액의 온도를 낮추면 중합도와 에스테르화 반응률은 크게 영향을 받지 않으나 DEG함량은 크게 감소함을 알 수 있었다. 원료 유입속도가 감소하면 반응성이 향상됨을 보였다. 반응온도가 커질수록 DEG함량은 증가하나 에스테르화 반응률은 임의의 온도에서 최대값을 가짐을 알 수 있었다. 이 반응기 모델은 실제공장 운전자료로부터 개발되었기 때문에 현장에서 공정개선 및 환형 반응기 설계에 응용되어질 것으로 기대된다.
A loop reactor model in the continuous process for the oligomer formation from terephthalic acid and ethylene glycol was proposed and verified by commercial plant data. The effect of various design and operating parameters, e.g., recycle ratio, residence time ratio of heat exchange to main reactor, feed mole ratio, and feed flow rate, reaction temperature on the degree of esterification, degree of polymerization, DEG concentration, and condensate flow rate was investigated. It was investigated that in case of large residence time ratio of reactor to total loop reactor system and low reflux ratio, both the degree of esterification and degree of polymerization were enhanced whereas the concentration of DEG decreased. Both residence time ratio and reflux ratio should be considered together to maximize the degree of esterification and polymerization. In case the feed temperature of reaction mixture to heat exchange was decreasing, both the degree of esterification reaction and degree of polymerization were slightly affected whereas the concentration of DEG decreased greatly. The reactor performance was enhanced as the feed flow rate decreased. DEG concentration increased with reaction temperature whereas the degree of esterification had maximum point at some reaction temperature. It was expected that the loop reactor model can be applied to the reactor design and process development of real plant since the model was developed based on the real plant data.
  1. Yamada T, Imamura Y, Makimura O, Polym. Eng. Sci., 25(12), 788 (1985) 
  2. Yamada T, Polym. J., 24(1), 43 (1992) 
  3. Yamada T, J. Appl. Polym. Sci., 51(7), 1323 (1994) 
  4. Yamada T, J. Appl. Polym. Sci., 45, 1919 (1992) 
  5. Reimschuessel HK, Ind. Eng. Chem. Prod. Res. Dev., 19, 117 (1980) 
  6. Ravindranath K, Mashelkar RA, J. Appl. Polym. Sci., 22, 610 (1982)
  7. Choi SM, Choi YC, Cheong SI, J. Korean Fiber Soc., 34(8), 524 (1997)
  8. Yamada T, Imamura Y, Makimura O, Polym. Eng. Sci., 26(10), 708 (1986) 
  9. Yamada T, J. Appl. Polym. Sci., 37, 1821 (1989) 
  10. Hovenkamp SG, Munting JP, J. Polym. Sci. A: Polym. Chem., 8, 679 (1970) 
  11. Yamada T, Imamura Y, Polym. Eng. Sci., 28(6), 381 (1988)