화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.6, 682-687, October, 2001
이성분 CO2/N,N-DMFA와 CO2/N,N-DEFA계의 고압 상거동
High Pressure Phase Behavior of Binary CO2/N,N-DMFA and CO2/N,N-DEFA Systems
E-mail:
초록
초임계 이산화탄소를 포함한 N,N-Dimethylformamide (N,N-DMFA)와 N,N-Diethylformamide (N,N-DEFA)에 대한 이성분계 상평형 데이터를 얻기 위해 실험을 수행하였다. CO2-N,N-DMFA 및 CO2-N,N-DEFA의 이성분계 압력-조성관계를 온도 318.2 K, 338.2 K, 358.2 K, 378.2 K 그리고 398.2 K와 압력 2.90 ~ 20.72 MPa 범위에서 얻었다. 일정 압력에서 N,N-DMFA와 N,N-DEFA에 대한 이산화탄소의 용해도는 온도가 증가함에 따라 감소함을 알 수 있으며, 또한 혼합물 임계점 압력은 온도가 증가함에 따라 증가하였다. 순수성분 이산화탄소와 N,N-DMFA 및 N,N-DEFA에 대해 증기압을 서로 연결하는 혼합물 임계곡선을 계산하였다. 본 연구에서 실험한 자료를 Peng-Robinson 상태방정식으로 모델링하였으며, Peng-Robinson 상태방정식에서 온도에 독립적인 두개의 파라미터를 이용하여 계산한 계산치와 실험치를 비교한 결과 좋은 일치를 보였다.
The high pressure binary phase equilibria data was obtained for N,N-Dimethylformamide (N,N-DMFA) and N,N-Diethylformamide (N,N-DEFA) with supercritical carbon dioxide. Pressure-composition isotherms were obtained for CO2-N,N-DMFA and CO2-N,N-DEFA systems at the temperatures of 318.2K, 338.2K, 358.2K, 378.2K, 398.2K and pressures of 2.90 to 20.72 MPa. The solubility of carbon dioxide in N,N-DMFA and N,N-DEFA decreased as the temperature increased at a constant pressure. The pressure at critical points of the mixture increased as the temperature increased. At a nominal pressure, the curve of critical points for the mixture exhibited a maximum at temperatures between the critical temperatures of carbon dioxide-N,N-DMFA and carbon dioxide-N,N-DEFA systems. The experimental results obtained in this study were modeled using the peng-Robinson equation of state. A good fit of the data was obtained with the Peng-Robinson equation using two adjustable mixture parameters for the carbon dioxide-N,N-DMFA and the carbon dioxide-N,N-DEFA systems.
  1. Prausnitz JM, Lichtenthaler RN, Azevedo EG, "Molecular Thermodynamics of Fluid-Phase Equilibria", 3th ed., Prentice Hall, New Jersey (1999)
  2. Byun HS, Hasch BM, McHugh MA, Fluid Phase Equilib., 115(1-2), 179 (1996) 
  3. Byun HS, Jeon NS, Fluid Phase Equilib., 167(1), 113 (2000) 
  4. Deiter UK, Schneider GM, Fluid Phase Equilib., 29, 145 (1986) 
  5. Hanndy JB, Hogarth J, Proc. Royal Soc., 30, 484 (1879)
  6. Zhuze TP, Petroleum, 23, 298 (1960)
  7. Hasch BM, McHugh MA, Fluid Phase Equilib., 64, 251 (1991) 
  8. Byun HS, McHugh MA, Ind. Eng. Chem. Res., 39(12), 4658 (2000) 
  9. Byun HS, Kim YS, Im JK, J. Korean Ind. Eng. Chem., 9(6), 924 (1998)
  10. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976) 
  11. Perry RH, Green DW, "Perry's Chemical Engineers' Handbook", 7th ed., McGraw-Hill, New York (1997)
  12. Reid RC, Prausnitz JM, Poling BE, "The Properties of Gases and Liquids", 4th ed., McGraw-Hill, New York (1987)
  13. Vargaftik NB, "Handbook of Physical Properties of Liquid and Gases", Springer-Verlag, Berlin (1983)
  14. McHugh MA, Krukonis VJ, "Supercritical Fluid Extraction: Principles and Practice", 2th ed., Butterworth, Stoneham (1993)
  15. Peters CJ, Gauter K, Chem. Rev., 99(2), 419 (1999) 
  16. Dean JA, "Lange's Handbook of Chemistry", 13th ed., McGraw-Hill, New York (1972)