Polymer(Korea), Vol.25, No.5, 736-743, September, 2001
전기활성 Poly(2-acrylamido-2-methylpropanesulfonic acid)고분자 겔 구동기의 합성 및 특성분석
Synthesis and Characterization of Electro-Active Poly(2-acrylamido-2-methylpropanesulfonic acid) Polymer Gel Actuator
E-mail:
초록
N,N-Methylenebisacrylamide (MBAA)로 가교 결합된 electro-active 고분자(EAP)(poly(2-acrylamido-2-methylpropane sulfonic acid), PAMPS) 겔을 수용액 상에서 potassium persulfate를 개시제로 하여 라디칼 중합시켜 제조하였다. PAMPS 겔의 구동성을 부여하기 위하여 계면활성제로 팽윤하며 치환하였다. 계면활성제가 치환된 PAMPS 겔은 용액내의 인가된 전압하에서, 그 전기장 변화에 의해 큰 변위를 나타내는 구동특성을 보였다. PAMPS 겔은 빠른 전기 인력, 겔의 swelling-deswelling 효과 그리고 계면활성제의 소수성 반응의 협동적 과정으로 나타난다. PAMPS 겔의 응답속도는 인가된 전압 및 가교도가 증가할수록 증가하였으며, 구동이 반복적으로 진행됨에 따라 응답속는 증가하였다. 겔의 두께가 증가하면 응답속도는 감소하였다.
An electro-active polymer(EAP) (poly(2-acrylamido-2-methyl propane sulfonic acid), PAMPS) gel crosslinked with N, N-methylenebisacrylamide (MBAA) has been prepared by free radical polymerization in aqueous solution with potassium persulfate as initiator. PAMPS gel was swollen in surfactant solution to substitute surfactant for using as actuator. PAMPS gel showed a large movement in the surfactant solution by electric field. PAMPS gel showed the reversible bending and fast response rate. Bending mechanism of gel is related to the cooperative process of gydrophobic interaction, swelling-deswelling of gel and the electrostatic attraction between anode(+) and the anions of PAMPS gel. The response rate of PAMPS gel was increased as the applied potential and the degree of cross-linkage were increased. The response rate was increased as the bending cycle was repeated, but it was decreased with increasing the gel thickness.
Keywords:electro-active polymer;(poly(2-acrylamido-2-methylpropane sulfonic acid) PAMPS);diffusion;swelling and deswelling;hydrophobic interaction
- Sawahata K, Hara M, Yasunaga H, Osada Y, J. Control. Release, 14, 253 (1990)
- Kornbluh R, Perline R, Eckerle J, Joseph J, IEEE Int. Conf., 2147 (1998)
- Hirai T, Nemoto H, Hirai M, Hayashi S, J. Appl. Polym. Sci., 53(1), 79 (1994)
- Osada Y, Okuzaki H, Hori H, Nature, 355, 242 (1992)
- Shiga T, Hirose Y, Okada A, Kurauchi I, J. Appl. Polym. Sci., 47, 113 (1993)
- Barsi L, Buki A, Szabo D, Zrinyi M, Progress Colloid Polym. Sci., 102, 57 (1996)
- Sansinena JM, Olazabal V, Otero TF, Poloda Fonseca CN, De Paoli MA, Chem. Commun., 2217 (1997)
- Smela E, Inganas O, Lundstrom I, Science, 268(5218), 1735 (1995)
- Ashraf SA, Chen F, Too CO, Wallace GG, Polymer, 37(13), 2811 (1996)
- Sewa S, Onishi K, Asaka K, Fujiwara N, Oguro K, Proc. MEMS 98, 148 (1998)
- Kanno R, Tadokoro S, Takamori T, Hattori M, IEEE Int. Conf., 219 (1996)
- Mojarrad M, Shahinpor M, IEEE Int. Conf., 2152 (1997)
- Bar-Cohen Y, Leary SP, Shahimpoor M, Simpson JO, Smith J, Proc. SPIE 6th Int. Conf., 321 (1999)
- Narita T, Gong JP, Osada Y, Macromol. Rapid Commun., 18, 853 (1997)
- Narita T, Gong JP, Osada Y, J. Phys. Chem. B, 102(23), 4566 (1998)
- Goddard ED, JAOCS, 71, 1 (1994)
- Stake I, Yang JT, Biopolymers, 15, 2263 (1976)
- Osada Y, Hasebe M, Chem. Lett., 1285 (1985)
- Umezawa K, Osada Y, Chem. Lett., 1795 (1987)
- Osada Y, Umezawa K, Yamauchi A, Makromol., 189, 597 (1988)
- Osada Y, Ohnishi K, Macromolecules, 24, 3020 (1991)
- Gong JP, Kawakami I, Sergeyev VG, Osada Y, Macromolecules, 24, 5246 (1991)
- Kishi R, Osada Y, J. Chem. Soc.-Faraday Trans., 85, 655 (1989)
- Okuzaki H, Osada Y, Makromol., 502, 27 (1994)
- Yeh FJ, Sokolov EL, Khokhlov AR, Chu B, J. Am. Chem. Soc., 118(28), 6615 (1996)
- McQuigg DW, Kaplan JI, Dubin PL, J. Phys. Chem., 96, 1973 (1992)
- Ueoka Y, Gong JP, Osada Y, J. Intell. Mater. Syst., 8, 465 (1997)