화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.5, 517-522, August, 2001
전바나듐계 레독스 흐름전지용 Carbon Felt 전극의 양극산화
The Anodic oxidation of Carbon Felt Electrodes for the All Vanadium Redox-Flow Battery
E-mail:
초록
전바나듐계 레독스-흐름전지(All Vanadium Redox Battery, VRFB)는 대용량 에너지 저장과 공급을 위한 시스템으로써 유명한 2차전지라 할 수 있다. 본 연구에서는 VRFB에서 전극으로 쓰이고 있는 carbon felt를 양극산화(anodic oxidation)한 후 Cyclic Voltammetry(CV)를 통하여 처리전후의 산화·환원 반응 특성을 비교하였다. 또란 carbon felt 전극의 표면에 미치는 양극산화의 효과를 조사하기 위하여 X-ray Photoelectron Spectroscopy(XPS)를 이용하였다. 양극산화 후 GF20-3 및 GF20-5 carbon felt 전극의 비표면적 변화는 거의 없었으며, FT-IR과 XPS spectrum 분석 자료로부터 전극표면의 산소함량이 증가하였음을 알 수 있었다. CV 측정 결과 양극산화 후에 산화·환원 반응성과 가역성이 우수함을 확인하였고 GF20-5를 이용한 VRFB의 충방전 실험결과 처리 전 78.1%에서 처리 후 84.2%로 에너지 효율이 향상됨을 알 수 있었다.
All vanadium redox-flow battery (VRFB) is promising secondary battery, since it can be used s a large scale energy storage and power supply system. In this study, to investigate redos reactivity of vandium ion species the carbon felt electrodes were treated by anodic oxidation and the cyclic voltammograms were measured. The effect of anodic oxidation on the surface chemistry of carbon felt electrodes were also investigated using the X-ray photoelectron spectroscopy (XPS). After the anodic oxidation, the surface area of GF20-3 and GF20-5 carbon felt electrodes were unchanged but the XPS and IR spectrum analysis revealed an increase in the overall surface oxygen content. Redox reaction characteristics using CV revealed that the treated electrodes were more reversible than the untreated electrodes. Through cell performance of VRFB with treated the FG20-5 electrode, energy efficiency over 84,2% was obtained, compared with 78% for the untreated electrode.
  1. 大矢晴彦, 川原崇, 姜安沫, 相原雅彦, 根岸洋一, 電氣化學, 62, 863 (1994)
  2. Bartolozzi M, J. Power Sources, 27, 219 (1989) 
  3. Gibbs CE, Steel MCF, J. Power Sources, 37, 35 (1992) 
  4. Gillis EA, J. Power Sources, 37, 45 (1992) 
  5. Kazacos MS, Kasherman D, Hong DR, Kazacos M, J. Power Sources, 35, 399 (1991) 
  6. Kaneko H, Nozaki K, Wada Y, Aoki T, Negish A, Kamimoto M, Electrochim. Acta, 36, 1191 (1991) 
  7. Bennion DN, J. Electrochem. Soc., 84 (1984)
  8. Nozaki K, Kaneko H, Negishi A, Ozawa T, J. Electrochem. Soc., 84, 143 (1984)
  9. Tsuda I, Kurokawa K, Nozaki K, Sol. Energy Mater. Sol. Cells, 39, 503 (1994)
  10. Mohammadi T, Skyllaskazacos M, J. Membr. Sci., 107(1-2), 35 (1995) 
  11. Kazacos MS, Grossmith F, J. Electrochem. Soc., 134, 2950 (1987) 
  12. Kazacos M, Kazacos MS, J. Electrochem. Soc., 136, 2759 (1989) 
  13. Sum E, Kazacos MS, J. Power Sources, 15, 179 (1985) 
  14. Hagg M, Besenhard JO, Kazacos MS, in Proceedings of the 14th Annual Battery Conference on Applications and Advances, January (1999)
  15. Haddadi-Asl V, Rabbani MS, Iranian Polym. J., 7, 95 (1998)
  16. Zhong S, Padeste C, Kazacos M, Kazacos MS, J. Power Sources, 45, 29 (1993) 
  17. Sun B, Kazacos MS, Electrochim. Acta, 37, 2459 (1992) 
  18. Mohammadi F, Timbrell P, Zhong S, Padeste C, Kazacos MS, J. Power Sources, 52, 61 (1994) 
  19. Osaka T, Oyama N, Ohsaka T, "電氣化學法", 講談社, 東京 (1994)