HWAHAK KONGHAK, Vol.26, No.1, 97-103, February, 1988
실관막에 의한 미생물의 Cross Flow 여과
Cross Flow Cell Filtration by a Hollow Fiber Membrane
초록
미생물이나 단백질의 농축 수단으로 Cross Flow(CF) 여과는 매우 유용하게 사용되어 왔는데 단백질의 경우 이에 대한 연구가 많이 진행되어 겔층 이론에 의해서 설명될 수 있었지만 미생물 균체에 있어서는 주로 농축과 같은 응용면의 연구가 이루어져서 본 연구에서는 미생물의 Cross Flow 여과에 대해서 단백질의 경우처럼 이론적, 조직적인 연구를 수행하였다. 미생물 균체의 CF 여과는 단백질과 달리 겔층 이론에 의해서 설명될 수 없었으며 여과속도는 일정압력차 이상에서는 압력차에 영향을 받지 않았고 유속에 대해서는 대장균과 효모의 경우 각각 U0.5, U0.8에 비례하였다. Stokes-Einstein 식에 의해 구한 미생물 균체의 확산도에 의해서 예측한 여과속도는 실험치보다 훨씬 작은 값을 나타내었는데 이와 같이 서로 큰 차이를 나타내는 것은 단순 확산 이외의 입자 이동현상이 존재하는 것으로 Tubular pinch 효과나 겔층 자체의 미끄러짐과 같은 다른 현상의 존재 가능성을 예측할 수 있었다.
Cross flow filtration(CFF) has been successfully employed as a means of concentrating microbial cells and proteins. While the CFF of proteins has been investigated thoroughly and could be explained in terms of the gel layer theory, the investigations on the microbial cells have been limited to the applications like concentration. In this study we aimed at studying the characteristics of CFF of microbial cells more systematically. Unlike in proteins, CFF of microbial cells could not be explained in terms of the gel layer theory. Fluxes were independent of the pressure difference which exceeded a certain level, but they increased with the flowrate in the hollow fiber and were proportional to U0.5 and U0.8 in the cases of E. coli and yeast respectively. Gel layer theory employing the diffusivity based on the Stokes-Einstein equation was applied to the system. But the predictions were far apart from the experimental data. Thus we suggested that the causes of the discrepancies between the theory and the experiment might be due to the tubular pinch effect or other phenomena such as gel layer slippage.