화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.38, No.4, 622-631, 2000
Reversible and irreversible heat capacity of poly(trimethylene terephthalate) analyzed by temperature-modulated differential scanning calorimetry
The heat capacity of poly(trimethylene terephthalate) (PTT) has been analyzed using temperature-modulated differential scanning calorimetry (TMDSC) and compared with results obtained earlier from adiabatic calorimetry and standard differential scanning calorimetry (DSC). Using quasi-isothermal TMDSC, the apparent reversing and nonreversing heat capacities were determined from 220 to 540 K, including glass and melting transitions. Truly reversible and time-dependent irreversible heat effects were separated. The extrapolated vibrational heat capacity of the solid and the total heat capacity of the liquid served as baselines for the analysis. As one approaches the melting region from lower temperature, semicrystalline PTT shows a reversing heat capacity, which is larger than that of the liquid, an observation that is common also for other polymers. This higher heat capacity is interpreted as a reversible surface or bulk melting and crystallization, which does not need to undergo molecular nucleation. Additional time-dependent, reversing contributions, dominating at temperatures even closer to the melting peak, are linked to reorganization and recrystallization (annealing), while the major melting is fully irreversible (nonreversing contribution).