Journal of Polymer Science Part A: Polymer Chemistry, Vol.38, No.1, 90-100, 2000
Photosensitization of carbazole derivatives in cationic polymerization with a novel sensitivity to near-UV light
Photosensitizers based on the carbazole structure were designed and developed for cationic polymerization. Along with triarylsulfonium and diaryliodonium salts, the carbazole derivatives showed a high photosensitization effect in the cationic photopolymerization of epoxides. The photophysical properties of the carbazole derivatives were studied in terms of electronic absorption, fluorescence, and phosphorescence spectrometry. Moreover, a unique photosensitization mechanism of the carbazole derivatives was discussed after studies of the fluorescence quenching, redox behavior, and kinetics of the photopolymerization by time-resolved fluorescence spectrometry, cyclic voltammetry, and photo differential scanning calorimetry, respectively. The results confirmed the redox photosensitization of the carbazole derivatives in cationic polymerization. The photosensitization of the carbazole and its ring or N-alkylated derivatives occurred predominantly in singlet excited states at the rate of the diffusion limit, whereas the carbazole derivatives with carbonyl substituents sensitized onium salts via triplet excited states on the basis of the Rehm-Weller equation in the photoinduced electron-transfer process.
Keywords:carbazole;onium salt;epoxide;electron transfer;photosensitization mechanism;cationic polymerization