Journal of Chemical Physics, Vol.115, No.8, 3888-3894, 2001
Energy dissipation and scattering angle distribution analysis of the classical trajectory calculations of methane scattering from a Ni(111) surface
We present classical trajectory calculations of the rotational vibrational scattering of a nonrigid methane molecule from a Ni(111) surface. Energy dissipation and scattering angles have been studied as a function of the translational kinetic energy, the incidence angle, the (rotational) nozzle temperature, and the surface temperature. Scattering angles are somewhat toward the surface for the incidence angles of 30 degrees, 45 degrees, and 60 degrees at a translational energy of 96 kJ/mol. Energy loss is primarily from the normal component of the translational energy. It is transferred for somewhat more than half to the surface and the rest is transferred mostly to rotational motion. The spread in the change of translational energy has a basis in the spread of the transfer to rotational energy, and can be enhanced by raising of the surface temperature through the transfer process to the surface motion.