화학공학소재연구정보센터
Journal of Materials Science, Vol.36, No.18, 4411-4418, 2001
The effect of the skin thickness and spherulite size on the mechanical properties of injection mouldings
In this work are studied the relationships between the microstructure and the mechanical properties of an injection moulded propylene-ethylene copolymer. Distinct microstructures were obtained by processing, through a moulding programme that includes the variation of the injection and the mould temperatures and the injection flow rate. They were characterized by the skin ratio (measured by polarised light microscopy) and the spherulite size (evaluated by small angle light scattering system). Tensile tests were carried out at two different constant loading velocities: 2 mm/min (3.33 x 10(-5) m/s) and 3 m/s, in order to assess the initial modulus, the yield stress, the strain and the energy at break. The results are presented in terms of the relationships between the chosen microstructural parameters and the selected tensile properties. The skin thickness is evidenced as an important microstructural feature. The role of the core spherulite size is secondary or even negligible. The results also show that other microstructural parameters must be considered to establish more general microstructure-properties relationships.