- Previous Article
- Next Article
- Table of Contents
Journal of Materials Science, Vol.36, No.16, 3833-3854, 2001
Review - Grain and subgrain characterisation by electron backscatter diffraction
The application of automated Electron Backscatter Diffraction (EBSD) in the scanning electron microscope, to the quantitative analysis of grain and subgrain structures is discussed and compared with conventional methods of quantitative metallography. It is shown that the technique has reached a state of maturity such that linescans and maps can routinely be obtained and analysed using commercially available equipment and that EBSD in a Field Emission SEM (FEGSEM) allows quantitative analysis of grain/subgrains as small as similar to0.2 mum. EBSD can often give more accurate measurements of grain and subgrain size than conventional imaging methods, often in comparable times. Subgrain/cell measurements may be made more easily than in the TEM although the limited angular resolution of EBSD may be problematic in some cases. Additional information available from EBSD and not from conventional microscopy, gives a new dimension to quantitative metallography. Texture and its correlation with grain or subgrain size, shape and position are readily measured. Boundary misorientations, which are readily obtainable from EBSD, enable the distribution of boundary types to be determined and CSL boundaries can be identified and measured. The spatial distribution of Stored Energy in a sample and the amount of Recrystallization may also be measured by EBSD methods.