화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.4, 431-437, August, 2001
Spout-Fluid형 유동층에 있어서 대립자의 선택적 배출
Selective Discharge of Coarse Particles in a Spout-Fluid Type Fluidized Bed
E-mail:
초록
유동층로에서 대립자에 의한 불유동을 미연에 방지하면서 안정된 유동조업을 장기간 유지하기 위해서는 대립자를 조업중에 선택적으로 배출시키는 기술이 중요하다. 본 연구에서는 가스-고체 유동층에서 원추형 가스분산판의 중앙에 spout tube를 연결 부착하여 로내에 공급된 입자중 유동에 지장을 줄 우려가 있는 대립자를 선택적으로 배출하는데 있어서 장치와 운전조건에 따른 입자 분리의 특성을 밝히고자 하였다. 이를 위해 직격 10 cm의 spout-fluid형 상온 유동층 시스템을 설치하고, 모사 입자로써 glass beads 를 사용했을 때 조업 변수의 변화에 따른 배출 속도와 분리 효율 등을 파악하였다. 대립자의 배출 속도와 분리 효율에는 spout tube내 가스유속이 가장 지배적인 변수로 작용하였다. 대립자의 분리효율을 90% 이상으로 유지하는데는 미립자내 최대입자의 입경을 기준한 입자 종말속도의 3.0배이상의 가스유속이 spout tube내 가스유속으로 설정되어야 했다. Spout tube내 가스유속이 낮은 경우 대립자의 배출 속도를 어느 수준으로 유지하는데 문제가 없다면 spout tube의 직경을 축소하는 것이 분리 효율은 높이고도 spout tube로의 가스 공급량은 감소시키는 효과가 있었다. 미립자에 대한 대립자의 초기 혼합률이 낮아질수록, 대립자의 입경이 작을수록 그리고 층내 유동성이 떨어질수록 대립자의 효율적 분리가 어려워짐 등을 유동층 공정의 설계와 실제 조업에서 충분히 고려해야 한다.
In a fluidized-bed operation, unwanted particles larger than a designed size can be introduced unexpectedly or form during the operation in a reactor. These large particles should be removed from the bed during the operation, otherwise a long-term stable operation is impossible due to defluidization phenomena caused by them. For this purpose, the present study examined a spout-fluid type fluidized bed reactor of which conical gas distributor had a spout tube(outlet) in its center, using glass beads as solid particles to be simulated. In the removal of large particles from a fluidized bed, the gas velocity in the spout tube was found to be one of the most important factors. In order to obtain more than 90% separation efficiency of unwanted coarse particles from fine particles, the gas velocity in the spout tube had to be kept at least 3.0 times higher than the terminal velocity for the largest particle size of fine particles. The separation efficiency decreased as the portion and the size of coarse particles decreased and as the fluidization in the bed became worse. It was also found that if the discharge of coarse particles through the spout tube was not affected by the decreation of inner diameter of the tube, the smaller inner diameter of the tube showed the better separation efficiency at a low gas velocity in the tube.
  1. Chou TC, Uang YM, Ind. Eng. Chem. Process Des. Dev., 24, 683 (1985) 
  2. Cusack BL, Wingrove GS, Haride GJ, I&SM, 13, February (1995)
  3. Jeon JY, Song YM, Kim HY, Yoon P, HWAHAK KONGHAK, 26(4), 364 (1988)
  4. Hassan A, Whipp RH, MPT International, 50, June (1996)
  5. Kitagawa T, Soc. Energy. Jpn., 75, 890 (1996)
  6. Koya T, Komata E, Kunii D, Kag. Kog. Ronbunshu, 14, 203 (1988)
  7. Kunii D, Levenspiel O, "Fluidization Engineering," 2nd edition, Butterworth-Heinemann, p.68-77 and p.80-83 (1991)
  8. Lee IO, Kim YH, Chung UC, International Patent, PCT/KR 65208(Korean Patent, Applicant No. 95-41931) (1996)
  9. Zhang JY, Zhang BJ, Chitester DC, Ind. Eng. Chem. Res., 27, 1277 (1988)