Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.3, 329-333, May, 2001
인산 첨착된 활성탄소섬유의 열적 영향과 이소프렌에 대한 흡착 특성
Thermal Effect on the Phosphoric Acid Impregnated Activated Carbon Fiber and Adsorption Properties Toward Isoprene
E-mail:
초록
활성탄소섬유(Activated Carbon Fiber : ACF)에 대하여 화학적 흡착능을 유도하고 이소프렌에 대한 흡착능을 향상시키기 위하여 인산 첨착 ACF를 제조하였다. 첨착 제조시 건조 온도를 변화시켜서, 첨착 특성, 비 표면적의 변화, 열 안정성 및 이소프렌에 대한 흡착 특성 변화를 관찰하였다. 건조온도가 400 ℃일 때 인산 첨착율이 12.7 w/w%로 최대였으며, 비표면적은 1148 m(2)/g으로 최저값을 나타내었다. ACF의 열적 특성을 조사한 바, 450 ~ 700 ℃에서는 인산기의 열분해 현상이 나타났다. 인산 첨착 ACF에 대한 이소프렌의 흡착 속도는 인산 첨착율과 비례하여 400 ℃로 건조한 인산 첨착 ACF가 가장 빠른 흡착 속도를 나타내었다. 400 ℃로 건조한 인산 첨착 ACF의 파과 시간(break-through time)은 이소프렌에 대하여 18 min으로 나타났으며, 이는 순수 ACF의 파과 시간이 2 min 30 s에 비하여 약 7.2배의 흡착 용량 향상을 나타내었다. 이러한 흡착 특성은 재생시에도 관찰되며, 재생 후의 흡착율은 재생전에 비하여 약 66%에 달하는 것으로 나타났다.
To introduce chemisorption property and improve adsorption capacities for isoprene, ACF (Activated Carbon Fiber) was impregnated by phosphoric acid. As the impregnated ACF was dried by programmed temperature from 300 ℃ to 500 ℃, degree of impregnation, surface area, thermal stability and adsorption properties for isoprene were observed. The degree of impregnation of the ACF, dried at the 400 ℃, was 12.7 w/w% and surface area was 1148 m(2)/g. Over the temperature range of 450 ℃ to 700 ℃, there was one-step thermal degradation by the thermal decomposition of phosphonyl group. The adsorption rate of phosphoric acid on the impregnated ACF, which was dried at 400 ℃, was the fastest. The breakthrough time of ACF that was dried at 400 ℃ was 18 min, and its adsorption capacity improved roughly 7.2 times in comparison to the pure ACF. In addition, it was observed the adsorption properties persisted even after the regeneration. The adsorption efficiency of regenerated ACF was 66 percent compared to the unused impregnated ACF.
Keywords:activated carbon fiber;impregnation;phosphoric acid;isoprene;adsorption capacity;adsorption rate
- Foster KL, Fuerman RG, Economy J, Larson SM, Rood M, J. Chem. Mater., 4, 1068 (1992)
- Dimotakis ED, Cal M, Economy J, Rood M, Larson SM, Environ. Sci. Technol., in press (1994)
- National Research Council, "Rethinking the Ozone Problem in Urban and Regional Air Pollution," National Academy Press, Washington, D.C. (1991)
- Goldstein BD, J. Air Pollut. Control Assoc., 33, 454 (1983)
- Goldstein BD, J. Air Pollut. Control Assoc., 36, 367 (1986)
- Shalt J, Singh HB, Environ. Sci. Technol., 22, 1381 (1988)
- Exans GF, Lumpkin TA, Smith DL, Somerville MC, J. Air Waste Manage. Assoc., 42, 1319 (1992)
- Terry GM, J. Experimental Botany, 46(291), 1629 (1995)
- Cheremisinoff PN, Ellerbush MF, Carbon Adsorption Handbook, Ann Arbor Sci.,MI (1978)
- Bansal RC, Donnet JB, Stoeckli N, Active Carbon Marcel Dekker Inc., N.Y. (1988)
- Schulhof P, J. Am. Water Works Assoc., 71, 648 (1979)
- Clark MK, Lykins BW, Granular Activated Carbon, Lewis Publ., MI, 257 (1989)
- Ryu SK, High Temp. High Press., 22, 345 (1990)
- Suzuki M, Carbon, 32(4), 577 (1994)
- Bansal RC, Chhabra P, J. Chem., 20A, 449 (1981)
- Ehrburger P, Herque JJ, Donnet JB, Petroleum Derived Carbon and Graphite Conf., 1, Soc. Chem. Ind., London (1978)
- Fu R, Li L, Lu Y, Yue Z, Zeng H, Proceedings of International Conference on Biorelated Polymers Controlled Release Drugs and Reactive Polymers, 52, Xi'an, China (1997)
- Fu R, Li L, Lu Y, Zeng H, New Carbon Mater., 12(4), 39 (1997)
- Fu R, Li L, Lu Y, Zeng H, International Symposium of Carbon (1998)
- Brunouer S, Emmett P, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
- Commitee of the Korea Carbon Materials, Workshop of the Application and Improving of the Carbon Mater. (1995)