Journal of Chemical Physics, Vol.114, No.22, 9725-9732, 2001
Torsional diffusion Monte Carlo: A method for quantum simulations of proteins
The quantum diffusion Monte Carlo (DMC) method is extended to the treatment of coupled torsional motions in proteins. A general algorithm and computer program has been developed by interfacing this torsional-DMC method with all-atom force-fields for proteins. The method gives the zero-point energy and atomic coordinates averaged over the coupled torsional motions in the quantum ground state of the protein. Application of the new algorithm is made to the proteins gelsolin (356 atoms and 142 torsions) and gp41-HIV (1101 atoms and 452 torsions). The results indicate that quantum-dynamical effects are important for the energies and geometries of typical proteins such as these.