Journal of Chemical Physics, Vol.113, No.20, 9248-9261, 2000
X-ray photoelectron spectroscopy and x-ray absorption near edge structure study of copper sites hosted at the internal surface of ZSM-5 zeolite: A comparison with quantitative and energetic data on the CO and NH3 adsorption
The oxidation state of Cu species dispersed in a Cu-ZSM-5 zeolite obtained by a nonconventional gas-phase CuCl exchange, and nominally containing only Cu(I) species, was studied by x-ray photoelectron spectroscopy (XPS) and x-ray absorption near edge structure (XANES) analyses. The oxidation of Cu(I) species to Cu(II) by simple exposure to the atmosphere and subsequent reduction by thermal activation in vacuo was monitored. The quantitative and energetic aspects of the formation of carbonyl-like and amino-complexes at the metallic sites was studied by means of adsorption microcalorimetry. CO and NH3 were used as probe molecules in order to assess the coordinative unsaturation of the Cu(I) cations. Adsorption heats comprised in the 130-40 kJ mol(-1) interval were obtained for the formation of both type of complexes. The perturbation induced on the Cu centers and/or on the zeolite matrix by the adsorption of the probe molecules was monitored by parallel experiments of XPS, IR, and XANES. A significant fraction of CO and NH3 molecules are irreversibly held on Cu(I) sites even after outgassing at room temperature (RT) at a final dynamic vacuum of 10(-5) Torr. On the contrary, no evidence of Cu(I)/CO or of Cu(I)/NH3 complexes was observed by XPS, indicating that such adducts are totally destroyed upon outgassing at 10(-9) Torr. This fact implies a reconsideration of what was previously considered as a "stable adduct." XPS allowed to reveal the existence of ammonia adsorbed on defective Al(III) species, and to explain the chemical nature of species formed at the earliest stages of NH3 dosage and characterized by a heat of adsorption as high as 180 kJ mol(-1). By comparing the quantitative XPS and volumetric-calorimetric data it was inferred that a significant gradient of defects amount is present in the system. Finally, from the whole set of XPS measurements here reported and from parallel blank experiments on the ZSM-5 zeolite before Cu-exchange, a calibration scale for the N(1s) peak of various nitrogen species in the different zeolite samples is proposed.