Journal of Chemical Physics, Vol.113, No.2, 508-513, 2000
Size-intensive decomposition of orbital energy denominators
We introduce an alternative to Almlof and Haser's Laplace transform decomposition of orbital energy denominators used in obtaining reduced scaling algorithms in perturbation theory based methods. The new decomposition is based on the Cholesky decomposition of positive semidefinite matrices. We show that orbital denominators have a particular short and size-intensive Cholesky decomposition. The main advantage in using the Cholesky decomposition, besides the shorter expansion, is the systematic improvement of the results without the penalties encountered in the Laplace transform decomposition when changing the number of integration points in order to control the convergence. Applications will focus on the coupled-cluster singles and doubles model including connected triples corrections [CCSD(T)], and several numerical examples are discussed.