Journal of Chemical Physics, Vol.110, No.16, 7650-7657, 1999
Gaussian-3 theory using density functional geometries and zero-point energies
A variation of Gaussian-3 (G3) theory is presented in which the geometries and zero-point energies are obtained from B3LYP density functional theory [B3LYP/6-31G(d)] instead of geometries from second-order perturbation theory [MP2(FU)/6-31G(d)] and zero-point energies from Hartree-Fock theory [HF/6-31G(d)]. This variation, referred to as G3//B3LYP, is assessed on 299 energies (enthalpies of formation, ionization potentials, electron affinities, proton affinities) from the G2/97 test set [J. Chem. Phys. 109, 42 (1998)]. The G3//B3LYP average absolute deviation from experiment for the 299 energies is 0.99 kcal/mol compared to 1.01 kcal/mol for G3 theory. Generally, the results from the two methods are similar, with some exceptions. G3//B3LYP theory gives significantly improved results for several cases for which MP2 theory is deficient for optimized geometries, such as CN and O-2(+). However, G3//B3LYP does poorly for ionization potentials that involve a Jahn-Teller distortion in the cation (CH4+, BF3+, BCl3+) because of the B3LYP/6-31G(d) geometries. The G3(MP2) method is also modified to use B3LYP/6-31G(d) geometries and zero-point energies. This variation, referred to as G3(MP2)//B3LYP, has an average absolute deviation of 1.25 kcal/mol compared to 1.30 kcal/mol for G3(MP2) theory. Thus, use of density functional geometries and zero-point energies in G3 and G3(MP2) theories is a useful alternative to MP2 geometries and HF zero-point energies.