Catalysis Letters, Vol.66, No.4, 205-213, 2000
Highly active methanol decomposition catalyst derived from Pd-hydrotalcite dispersed on mesoporous silica
Pd-hydrotalcite (abbreviated as Pd(HT)) was dispersed on HMS (hexagonal mesoporous silica) by synthesizing Pd(HT) in an HMS suspension, and the resultant product (Pd(HT)/HMS) was used as a catalyst precursor for methanol decomposition to synthesis gas. The IR spectra of Pd(HT)/HMS showed all the bands of Pd(HT) and HMS with little shift, which indicated that Pd(HT) was synthesized in the Pd(HT)/HMS. Pd(HT)/HMS did not show the XRD pattern of Pd(HT) when the mass ratio of Pd(HT) to HMS was from 2/1 to 1/2. This indicated that Pd(HT) was formed in very small particles in the Pd(HT)/HMS after dispersion. Two endothermic peaks of Pd(HT) in the DTA curve shifted to lower temperatures in the Pd(HT)/HMS because the small Pd(HT) particles formed in the Pd(HT)/HMS were easily collapsed by heat treatment. Pd(HT)/HMS was thermally decomposed and reduced to form a supported Pd catalyst (abbreviated Pd(Mg(Al)O)/HMS) for methanol decomposition. Pd(Mg(Al)O)/HMS at 3.6 wt% showed a 52.5% conversion which was much higher than those over 3.6 wt% Pd(Mg(Al)O) (34.7%) and 3.6 wt% Pd/HMS (13.7%) for methanol decomposition at 523 K. The conversions of methanol over Pd(Mg(Al)O) and Pd/HMS increased with the increase in Pd loadings from 3.6 to 15 wt% and decreased when the Pd loadings were over 15 wt%. In contrast, the conversion over Pd(Mg(Al)O)/HMS increased with the increase in Pd loading even when the Pd loading was up to 30%. 30 wt% Pd(Mg(Al)O)/HMS showed a 91.7% conversion which was about twice that over 15 wt% Pd(Mg(Al)O) (47.1%) at 523 K. The Pd(Mg(Al)O)/HMS catalyst showed a larger BET surface area and Pd metal surface area than those of Pd(Mg(Al)O). By characterization using XPS analyses, the metal-support interaction between small Pd and small Mg(Al)O became stronger in the Pd(Mg(Al)O)/HMS catalyst. Large surface area, high Pd dispersion and strong metal-support interaction caused the high catalytic activity for methanol decomposition to synthesis gas over the Pd(Mg(Al)O)/HMS catalyst.