화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.69, No.5, 548-558, 2000
Growth of Ca-D-malate crystals in a bioreactor
To develop a bioreactor for solid-to-solid conversions, the conversion of solid Ca-maleate to solid Ca-D-malate by permeabilized Pseudomonas pseudoalcaligenes was studied. In a bioreactor seeded with product (Ca-D-malate) crystals, growth of Ca-D-malate crystals is the last step in the solid-to-solid conversion and is described here. Crystal growth is described as a transport process followed by surface processes. In contrast to the linear rate law obeyed by the transport process, the surface processes of a crystal-growth process can also obey a parabolic or exponential rate law. Growth of Ca-D-malate crystals from a supersaturated aqueous solution was found to be surface-controlled and obeyed an exponential rate law. Based on this rate law, a kinetic model was developed which describes the decrease in supersaturation due to Ca-D-malate crystal growth as a function of the constituent ions, Ca2+ and D-malate(2-). The kinetic parameters depended on temperature, but, as expected (surface-controlled), they were hardly affected by the stirring speed.