Biotechnology and Bioengineering, Vol.67, No.4, 424-434, 2000
Use of a batch-stirred reactor to rationally tailor biocatalytic polytransesterification
Despite favorable thermodynamics, high-molecular weight and low-dispersity polyesters are difficult to synthesize biocatalytically in organic solvents. We have reported previously that the elimination of solvent can improve the kinetics and apparent equilibrium significantly (Chaudhary et al., 1997a). We now present the design and use of a batch-stirred enzyme reactor to control the biocatalytic polymerization. Using the reactor, polyester having a molecular weight of 23,400 Da and a polydispersity of 1.69 was synthesized in only 1 h at 60 degrees C. Additional factors like enzyme-deactivation kinetics, enzyme specificity, and initial exothermicity were investigated to develop a better understanding of this complex reaction system. (C) 2000 John Wiley & Sons, Inc.