Materials Science Forum, Vol.338-3, 131-136, 2000
Fast SiC epitaxial growth in a chimney CVD reactor and HTCVD crystal growth developments
The epitaxial growth of SiC is investigated in a CVD process based on a vertical hot-wall, or "chimney", reactor geometry. Carried out at increased temperatures (1650 to 1850 degreesC) and concentrations of reactants, the growth process enables epitaxial rates ranging from 10 to 50 mum/h. The growth rate is shown to be influenced by two competing processes: the supply of growth species in the presence of homogeneous gas-phase nucleation, and, the etching effect of the hydrogen carrier gas. The quality of thick (20 to 100 mum) low-doped 4H-SiC epitaxial layers grown at rates ranging between 10 and 25 mum/h are discussed in terms of thickness uniformity, surface morphology and purity. The feasibility of high voltage Schottky rectifiers (V-BR from 2 to similar to3.8 kV) on as-grown chimney CVD epilayers is reported. In a second part, recent developments of the High Temperature Chemical Vapor Deposition (HTCVD) technique for SiC crystal growth are described. Using pure gases (SiH4 and C2H4) as source material and growth temperatures of 2100-2300 degreesC, this technique enables at present growth rates ranging from 0.4 to 0.8 mm/h. 6H and 4H-SiC crystals of thickness up to 7 mm and diameters up to 40 mm have been grown. We report micropipe densities of similar to 80 cm(-2) over areas of 0.5 cm(2) in 35 mm diameter 4H-SiC wafers sliced from HTCVD grown crystals. Undoped wafer demonstrators exhibit semi-insulating behavior with a bulk resistivity higher than 7.10(9) Omega cm at room temperature.
Keywords:chimney;CVD;defect density;growth process;high resistivity;HTCVD;purity;vertical hot-wall reactor