Langmuir, Vol.17, No.4, 1043-1053, 2001
Structure and transport properties of a charged spherical microemulsion system
Structure and transport properties of an oil-in-water microemulsion of weakly charged spherical micelles were studied experimentally using viscosity, NMR self-diffusion, and static and dynamic light scattering as well as theoretically by Brownian dynamics and Monte Carlo simulations and the Poisson-Boltzmann equation. The micelles contain decane covered by the nonionic surfactant pentaethylene glycol dodecyl ether (C12E5) and the ionic surfactant sodium dodecyl sulfate. The system has a constant surfactant-to-oil ratio, and the total volume fraction of surfactant and oil, Phi, is varied between 0.01 less than or equal to Phi less than or equal to 0.46. The micelles were made weakly charged by replacing a small fraction (0.01, 0.04, and 0.06) of the nonionic surfactant with ionic surfactant, retaining the micellar size. Comparison between self-diffusion and viscosity coefficients measured as a function of concentration showed that the system obeys the generalized Stokes-Einstein relation at lower micellar concentrations. At higher micellar concentrations, a slightly modified equation can be used upon the addition of an extra frictional factor due to stronger interactions, The collective diffusion coefficient shows a maximum as a function of the volume fraction. This result is in good agreement with predictions based on a charged hard-sphere model with hydrodynamic interactions. Other static and dynamic properties such as osmotic pressure, osmotic compressibility, and self-diffusion coefficient were obtained theoretically from simulations based on a charged-sphere model. The static and dynamic properties of the charged hard-sphere model qualitatively describe the behavior of the charged microemulsion micelles. At high volume fractions, Phi > 0.1, the agreement is quantitative, but at Phi < 0.1 the effect of the charge is smaller than what is predicted from the model.