화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.105, No.10, 1677-1682, 2001
Direct observation of resonance motion in complex elimination reactions: Femtosecond coherent dynamics in reduced space
In this communication we report the observation of a resonant, coherent nuclear motion in the elimination reaction of 1,3-dibromopropane (DBP), a system with 27 internal degrees of freedom. The system was investigated using femtosecond time-resolved mass spectrometry, following excitation at a total energy E 186 kcal mol(-1) (n-->5p Rydberg state). The vibrational coherence was observed with a period of 680 fs corresponding to the torsional vibration involving the two C-Br bonds. The C-Br bond cleavage occurs with a reaction time of 2.5 ps and yields the 3-bromopropyl radical, which subsequently reacts (cleavage of the second C-Br bond and ring closure) to give cyclopropane in 7.5 ps. These results elucidate the elementary steps and the mechanism: In al reduced space of two coordinates, the reaction coordinate involves a coherent torsional motion and C-Br bond rupture. Density functional theory (DFT) and time-dependent DFT calculations were carried out to detail the potential energy surface.