Journal of Chemical Physics, Vol.114, No.4, 1454-1466, 2001
A semiclassical approach to the dynamics of many-body Bose/Fermi systems by the path integral centroid molecular dynamics
We present a formalism of the path integral centroid molecular dynamics (CMD) extended to Bose and Fermi statistics as a semiclassical approach to explore the dynamics of quantum many-body systems. The validity of the method is examined in relation to the time correlation functions. The presently proposed scheme, refined from our previous derivation [Chem. Phys. Lett. 307, 187 (1999)], is aimed at the calculations of not the exact quantum-mechanical dynamics but the semiclassical dynamics under certain approximations. The formalism is based on the projection operator with which the Bose/Fermi system is mapped onto a particular type of pseudo-Boltzmann system. In the pseudo-Boltzmann system the correlation due to the Bose/Fermi statistics is introduced via an extra pseudopotential called the permutation potential and its relevant operator. Using the present semiclassical formalism, the time correlation function of centroid position, which is evaluated from the CMD trajectories in the pseudo-Boltzmann system, is an approximation to the Kubo canonical correlation function of position operator of the exact quantum-statistical system composed of bosons or fermions. There is no such apparent relation between the momentum operator and the corresponding momentum centroid. (C) 2001 American Institute of Physics.