Biotechnology and Bioengineering, Vol.57, No.5, 510-517, 1998
Retention and regeneration of native NAD(H) in noncharged ultrafiltration membrane reactors : Application to L-lactate and gluconate production
NAD(H) was retained in a noncharged ultrafiltration membrane reactor for the simultaneous and continuous production of L-lactate and gluconate with coenzyme regeneration. Polyethyleneimine (PEI), a 50-kDa cationic polymer, achieved coenzyme retentions above 0.8 for PEI/NAD(H) molar ratios higher than 5. The ionic strength of the inlet medium caused a decrease of NAD(H) retention that can be counterbalanced by an initial addition of 1% bovine serum albumin (BSA). Continuous reactor performance in the presence of PEI and BSA showed that NAD(H), glucose dehydrogenase, and lactate dehydrogenase were retained by 10-kDa ultrafiltration membranes; L-lactate and gluconate were produced at conversions higher than 95%. PEI enhanced the thermal stability of the enzymes used and increased the catalytic efficiency of glucose dehydrogenase, while no effect was found on the kinetic parameters of lactate dehydrogenase. A model that implements the kinetic equations of the two enzymes describes the reactor behavior satisfactorily. In brief, the use of PEI to retain NAD(H) is a new interesting approach to be widely applied in continuous synthesis with the large number of known dehydrogenases.