Biotechnology and Bioengineering, Vol.52, No.2, 320-331, 1996
Application of High Hydrostatic-Pressure for Increasing Activity and Stability of Enzymes
Elevated hydrostatic pressure has been used to increase catalytic activity and thermal stability of alpha-chymotrypsin (CT). For an anilide substrate, characterized by a negative value of the reaction activation volume (Delta V-not equal), an increase in pressure at 20 degrees C results in an exponential acceleration of the hydrolysis rate catalyzed by CT reaching a 6.5-fold increase in activity at 4700 atm (4.7 kbar). Due to a strong temperature dependence of Delta V-not equal, the acceleration effect of high pressure becomes more pronounced at high temperatures. For example, at 50 degrees C, under a pressure of 3.6 kbar, CT shows activity which is more than 30 times higher than the activity at normal conditions (20 degrees C, 1 atm). At pressures of higher than 3.6 kbar, the enzymatic activity is decreased due to a pressure-induced denaturation. Elevated hydrostatic pressure is also efficient for increasing stability of CT against thermal denaturation. For example, at 55 degrees C, CT is almost instantaneously inactivated at atmospheric pressure, whereas under a pressure of 1.8 kbar CT retains its anilide-hydrolyzing activity during several dozen minutes. Additional stabilization can be achieved in the presence of glycerol, which is most effective for protection of CT at an intermediate concentration of 40% (v/v). There has been observed an additivity in stabilization effects of high pressure and glycerol : thermal inactivation of pressure-stabilized CT can be decelerated in a supplementary manner by addition of 40% (v/v) glycerol. The protection effect of glycerol on the catalytic activity and stability of CT becomes especially pronounced when both extreme factors of temperature and pressure reach critical values. For example, at approximately 55 degrees C and 4.7 kbar, enzymatic activity of CT in the presence of 40% (v/v) glycerol is severalfold higher than in aqueous buffer. The results of this study are discussed in terms of the hypotheses which explain the action of external and medium effects on protein structure, such as preferential hydration and osmotic pressure.
Keywords:ALPHA-CHYMOTRYPSIN;THERMAL INACTIVATION;REVERSED MICELLES;ESCHERICHIA-COLI;ORGANIC-SOLVENTS;AEROSOL OT;PROTEINS;STABILIZATION;WATER;DISSOCIATION