화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.6, No.5, 287-296, September, 2000
Catalytic Properties and Characteristics of in situ Reduced Cu-ZnO-Al2O3 Catalysts
E-mail:
A Cu-ZnO-Al2O3 catalyst prepared using the oxalate coprecipitation process was subjected to in situ reduction using hydrazine in order to get variable amounts of Cu(0) Cu(+1), and Cu(+2) in the catalyst. The-effect of the Cu-oxidation state in the catalyst on its activity clearly indicated that easily reducible Cu(+2) species are responsible for creating a high Cu-metal area and thereby a high methanol yield and the presence of Cu(+1) crystallites in the fresh catalyst results in an inferior methanol yield. The CO2 desorbed amounts in the low temperature regions were in line with the Cu-metal area. Therefore, it would appear that the easily reducible CuO sites can adsorb and desorb CO2 at low temperatures and these common sites are responsible for creating a Cu-metal area and thereby methanol production from CO2 hydrogenation. However, the presence of ZnO ina poorly crystalline state is active for CO2 hydrogenation yet, enhances the RWGS reaction rather than methanol formation.
  1. Chinchen GC, Denny PJ, Jennings JR, Spencer MS, Waugh KC, Appl. Catal., 36, 1 (1998) 
  2. Inui T, Hara H, Takeguchi T, Kim JB, Catal. Today, 36(1), 25 (1997)
  3. Klier K, Adv. Catal., D.D. Eley, H. Pines and P.B. Weisz (ed.), Vol. 31, p. 243, Academic Press, New York (1982)
  4. Jun KW, Ramarao KS, Jung MH, Lee KW, Bull. Korean Chem. Soc., 19, 466 (1998)
  5. Bart JC, Sneeden RPA, Catal. Today, 2, 1 (1987)
  6. Herman RG, Klier K, Simmons GW, Finn BP, Bulko JB, Kobylinski TP, J. Catal., 56, 407 (1979)
  7. Mehta S, Simmons GW, Klier K, Herman RG, J. Catal., 57, 339 (1979)
  8. Robinson WRAM, Mol JC, Appl. Catal., 60, 61 (1990) 
  9. Deng JF, Sun Q, Zhang YL, Chen SY, Wu D, Appl. Catal. A: Gen., 139(1-2), 75 (1996)
  10. Chinchen GC, Waugh KC, Whan DA, Appl. Catal., 25, 101 (1986) 
  11. Chinchen GC, Spencer MS, Waugh KC, Whan DA, J. Chem. Soc.-Faraday Trans., 83, 2193 (1987)
  12. Jernigan GG, Somorjai GA, J. Catal., 147(2), 567 (1994)
  13. Muramatsu A, Sugimoto T, J. Colloid Interface Sci., 189(1), 167 (1997)
  14. Cai GY, Liu ZM, Shi RM, He CQ, Yang LX, Sun CL, Chang YJ, Appl. Catal. A: Gen., 125(1), 29 (1995)
  15. Fierro G, Lojacono M, Inversi M, Porta P, Cioci F, Lavecchia R, Appl. Catal. A: Gen., 137(2), 327 (1996)
  16. Moretti G, De Rossi S, Ferraris G, Appl. Surf. Sci., 45, 341 (1990)
  17. Porta P, Campa MC, Fierro G, Lo Jacono M, Minelli G, Moretti G, Stoppa L, J. Mater. Chem., 3, 505 (1993)
  18. Robinson WRAM, Mol JC, Appl. Catal., 76, 117 (1991) 
  19. Porta P, Dragone R, Lo Jacono M, Minelli G, Moretti G, Solid State Ion., 32-33, 1019 (1989)
  20. Moretti G, Fierro G, Lo Jacono M, Porta P, Surf. Interface Anal., 14, 325 (1989)
  21. McFadyen P, Matijevic E, J. Colloid Interface Sci., 44, 95 (1973)
  22. Bowker M, Houghton H, Waugh KC, J. Chem. Soc.-Faraday Trans., 77, 3023 (1981)
  23. Bowker M, Hyland JNK, Vandervell HD, Waugh KC, Proc. 8th Int. Congr. Catal., Vol. II, p. 35, Berlin, Verlag Chemie, Weinheim (1984)
  24. Hadden RA, Vandervell HD, Waugh KC, Webb G, Catal. Lett., 1, 27 (1988)
  25. Rieder KH, Stocker W, Phys. Rev. Lett., 57, 2548 (1986)
  26. Bowker M, Hadden RA, Houghton H, Hyland JNK, Waugh KC, J. Catal., 109, 263 (1988)
  27. Fu S, Somorjai GA, Surf. Sci., 262, 68 (1992)
  28. Koeppel RA, Baiker A, Wokaun A, Appl. Catal. A: Gen., 84, 77 (1992)
  29. Huang L, Kramer GJ, Wieldraaijer W, Brands DS, Poels EK, Castricum HL, Bakker H, Catal. Lett., 48(1-2), 55 (1997)