Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.2, 181-185, April, 2001
에폭시/클레이 나노복합재료의 제조와 특성에 관한 연구
Synthesis and Characterization of Epoxy/Clay Nanocomposites
E-mail:
초록
본 연구에서는 용융삽입법에 의한 고분자/클레이 나노복합재료를 제조하기 위해 smectite계 클레이 중 montmorillonite를 dodecylammonium chloride와 유기적으로 반응시켰다. 또한 이렇게 개질된 montmorillonite를 에폭시수지(diglycidyl ether of bisphenol A (DGEBA))와 다양한 함량비(wt%)로 혼합된 혼합물을 승온 10℃/min로 박리온도까지 열을 가하여 나노복합재료를 제조하였다. X-선 회절 분선(X-ray diffraction) 결과, 유기적으로 개질된 클레이의 층간 간격이 약 8Å정도 증가되었다. 또한, 클레이 양의 증가는 실리케이트 층간 간격의 변화와 무관함을 관찰하였으며 나노복합재료의 층과 층은 서로 박리되어서 균일하게 됨을 알 수 있었다. 또한 열시차분석기(differential scanning calorimeter, DSC)를 통하여 경화반응이 진행됨에 따라 두 개의 발열피크를 관찰하였다. 저온에서의 피크는 층간에 삽입된 에폭시 중합에 의한 것이고, 고온에서의 피크는 클레이 입자 표면에 존재하는 잔여 에폭시 모노머중합에 의한 것임을 확인하였다. 그리고, 열중량분석기(thermogravimetric analysis, TGA)를 통하여 montmorillonite의 함량이 증가함에 따라 열적 안정성 인자가 높아지는 것을 확인할 수 있었다.
In this work, one of the smectitic clay, montmorillonite, was organically modified with dodecylammonium chloride to prepare the polymer/clay nanocomposites by melt intercalation. After DGEBA (diglycidyl ether of bisphenol A)/clay nanocomposites has been mixed with weight percent of clay, it was synthesized by heating the mixture to the exfoliation temperature at a heating rate of 10 ℃/min. X-ray diffraction (XRD) showed that the silicate interlayer of organically modified clay increased about 8 Å. No significant change in silicate interlayer of nanocomposites was observed with the increased clay content. The silicate interlayer of nanocomposites contained a uniform dispersion of exfoliated clay layers. Differential scanning calorimeter (DSC) showed that two exothermic processes occurred during the reaction. The lower temperature process was attributed to polymerization of pre-intercalated epoxide on the internal surfaces. Polymerization of the extragallery monomer on the external and internal surfaces of the clay particles occurred at the higher temperature. Thermal stability coefficient was increased with increasing the clay content as indicated by thermogravimetric analysis (TGA).
- Pinnavaia TJ, Science, 220, 365 (1983)
- Giannelis EP, Met. Mater. Soc., 44, 28 (1992)
- Akelah A, Moet A, J. Appl. Polym. Sci.-Appl. Polym. Symp., 55, 153 (1994)
- Kojima Y, Usuki A, Okada A, Kawasumi M, Okada A, Kurauchi T, Kumigaito O, J. Polym. Sci. A: Polym. Chem., 31, 983 (1993)
- Wang MS, Pinnavaia T, Chem. Mater., 6, 468 (1994)
- Heitz T, Rohrbach P, Hocker H, Macromol. Chem., 190, 3295 (1989)
- Sigaud G, Achard MF, Hardouin F, Gasparous H, Mol. Cryst. Liq. Cryst., 155, 443 (1988)
- Whitesides GM, Mathias TP, Seto CT, Science, 254, 1312 (1991)
- Novak B, Adv. Mater., 5, 422 (1993)
- Michel BM, Julius VG, Adv. Mater., 11, 1362 (1999)
- Cho JW, Paul DR, Polymer, 42(3), 1083 (2001)
- Ke YC, Lu JK, Yi XS, Zhao J, Qi ZN, J. Appl. Polym. Sci., 78(4), 808 (2000)
- Kornmann X, Lindberg H, Berglund LA, Polymer, 42(4), 1303 (2001)
- Fu X, Qutubuddin S, Polymer, 42(2), 807 (2001)
- Huang JC, Zhu ZK, Yin J, Qian XF, Sun YY, Polymer, 42(3), 873 (2001)
- Hoffmann B, Kressler J, Stppelmann G, Fiedrich C, Kim GM, Colloid Polym. Sci., 278, 629 (2000)
- Agag T, Takeichi T, Polymer, 41(19), 7083 (2000)
- Wang Z, Pinnavaia TJ, Chem. Mater., 10, 3768 (1998)
- Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A, Macromolecules, 30(20), 6333 (1997)
- Oriakhi CO, Zhang X, Lerner MM, Appl. Clay Sci., 15, 109 (1999)
- Aranda P, Puiz-Hitzky E, Appl. Clay Sci., 15, 119 (1999)
- Mathias LJ, Davis RD, Jarrett WL, Macromolecules, 32(23), 7958 (1999)
- Lan T, Kaviratna PD, Pinnavaia TJ, J. Pinnavaia J. Phys. Chem. Solids, 57, 1005 (1996)
- Lan T, Kaviratna PD, Pinnavaia TJ, Chem. Mater., 7, 2144 (1995)
- Lagaly G, Solid State Ion., 22, 43 (1986)
- Park SJ, Kim TJ, Lee JR, J. Korean Ind. Eng. Chem., 10(7), 1046 (1999)
- Chen TK, Tien YI, Wei KH, Polymer, 41(4), 1345 (2000)
- Park SJ, Cho MS, J. Mater. Sci., 35(14), 3525 (2000)
- Dolye CD, Anal. Chem., 33, 77 (1961)
- Park SJ, Seo MK, Lee JR, J. Polym. Sci. A: Polym. Chem., 38(16), 2945 (2000)