화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.2, 165-169, April, 2001
천연 제올라이트의 이온교환 특성을 이용한 NH4(+)-N 이온 제거에 관한 연구
The Removal of NH4(+)-N ion by Ion Exchange of Natural Zeolite
E-mail:
초록
천연 제올라이트를 이용한 NH4(+)-N 제거 특성을 살펴보기 위해 수온, pH 및 공존 양이온이 이온 교환능에 미치는 영향을 살펴보았다. 우선 제올라이트의 NH4(+)-N 이온 교환능은 2.083 meq. NH4(+)-N/g-zeolite이었으며, 수온에 대한 영향은 없었다. 그러나 pH가 7에서 9로 증가함에 따라 4.2%가 감소하였다. 분리 인자는 수온이 25 ℃에서 55 ℃로 증가할 동안 24%의 증가를 보였다. 또한 K(+), Ca(2+) 및 Mg(2+) 등의 양이온이 존재할 경우 NH4(+)-N 이온 교환능이 28% 감소하였으며, 공존 양이온의 효과는 K(+)>Ca(2+)>Mg(2+)의 순으로 나타났다. 컬럼 시험에서는 유속이 5-15BV/h사이에서 이온 교환은 self-sharpening의 형태를 보여주었다. 이러한 결과는 생물학적 처리수의 유출수로부터의 NH4(+)-N 제거효율에 가능성이 있음을 보여주고 있다.
The ammonium-ion exchange characteristics of natural zeolite were investigated to remove NH4(+)-N. The effect of water temperature, pH and competitive cationic concentrations on the exchange capacity was examined. The ammonium-ion exchange capacity was found to be 2.083 meq. NH4(+)-N/g-zeolite, and it was not influenced by water temperature; however, with the increase of pH from 7 to 9, the capacity was reduced up to 4.2%. The separation factor was increased up to 24% with increase in the water temperature from 25 ℃ to 55 ℃. When the competitive cationic concentrations, such as K(+), Ca(2+), and Mg(2+), increased from 10 to 150 mg/L in the di-component systems, the selective ammonium-ion exchange capacity was decreased up to 28%. With the effect of competitive ion, the selectivity sequence was K(+)>Ca(2+)>Mg(2+). The column test has shown that the natural zeolite had self-sharpening of ion exchange independent of flow rate in the range of 5 to 15 BV/h. It indicated that NH4(+)-N from the effluents of biological treatment processes can be removed by usage of the domestic natural zeolite.
  1. Miale JN, Chen NY, Wisz PB, J. Catal., 6, 278 (1966) 
  2. Warshaver VE, Klaptosov VF, Zeltser YI, "Application of Zeolites in Catalysis", John Wiley and Sons, New York (1986)
  3. Tompson HS, Roy J, Agr. Soc. Engl., 11 (1950)
  4. Eichhorn H, Poggendorf, Ann. Phys. Chem., 105 (1958)
  5. Park JB, Dissertation, Dong-a University (1984)
  6. Oh JK, Dissertation, Dong-a University (1986)
  7. Kim BH, Dissertation, Hanyang University (1987)
  8. Kim SS, Dissertation, Kyungpook National University (1990)
  9. Jorgensen SE, Libor E, Water Res., 13, 159 (1979) 
  10. Jorgensen SE, Water Res., 10, 213 (1975) 
  11. Minato H, Stud. Surf. Sci. Catal., 24, 513 (1985)
  12. Dryden HT, Weatherley LR, Aquacult. Eng., 6, 339 (1987)
  13. Ames LL, Proc. 13th Pacific Northwest Indust. Wastewater Conf., Washingson State University, Pullman, WA, USA (1967)
  14. Barrer RM, Papadopoulos, J. Inforgan Nucl. Chem., 28, 629 (1967)
  15. Barrer RM, Townsend RP, J. Chem. Soc.-Faraday Trans., 72, 2650 (1976) 
  16. Skudder AJ, Ph.D. Dissertation, Cambridge University (1992)
  17. Cridland M, Ph.D. Dissertation, Cambridge University (1989)
  18. Langella A, Pansini M, Cappelletti P, de Gennaro B, de Gennaro M, Colella C, Microporous Mesoporous Mater., 37, 337 (2000)