Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.2, 165-169, April, 2001
천연 제올라이트의 이온교환 특성을 이용한 NH4(+)-N 이온 제거에 관한 연구
The Removal of NH4(+)-N ion by Ion Exchange of Natural Zeolite
E-mail:
초록
천연 제올라이트를 이용한 NH4(+)-N 제거 특성을 살펴보기 위해 수온, pH 및 공존 양이온이 이온 교환능에 미치는 영향을 살펴보았다. 우선 제올라이트의 NH4(+)-N 이온 교환능은 2.083 meq. NH4(+)-N/g-zeolite이었으며, 수온에 대한 영향은 없었다. 그러나 pH가 7에서 9로 증가함에 따라 4.2%가 감소하였다. 분리 인자는 수온이 25 ℃에서 55 ℃로 증가할 동안 24%의 증가를 보였다. 또한 K(+), Ca(2+) 및 Mg(2+) 등의 양이온이 존재할 경우 NH4(+)-N 이온 교환능이 28% 감소하였으며, 공존 양이온의 효과는 K(+)>Ca(2+)>Mg(2+)의 순으로 나타났다. 컬럼 시험에서는 유속이 5-15BV/h사이에서 이온 교환은 self-sharpening의 형태를 보여주었다. 이러한 결과는 생물학적 처리수의 유출수로부터의 NH4(+)-N 제거효율에 가능성이 있음을 보여주고 있다.
The ammonium-ion exchange characteristics of natural zeolite were investigated to remove NH4(+)-N. The effect of water temperature, pH and competitive cationic concentrations on the exchange capacity was examined. The ammonium-ion exchange capacity was found to be 2.083 meq. NH4(+)-N/g-zeolite, and it was not influenced by water temperature; however, with the increase of pH from 7 to 9, the capacity was reduced up to 4.2%. The separation factor was increased up to 24% with increase in the water temperature from 25 ℃ to 55 ℃. When the competitive cationic concentrations, such as K(+), Ca(2+), and Mg(2+), increased from 10 to 150 mg/L in the di-component systems, the selective ammonium-ion exchange capacity was decreased up to 28%. With the effect of competitive ion, the selectivity sequence was K(+)>Ca(2+)>Mg(2+). The column test has shown that the natural zeolite had self-sharpening of ion exchange independent of flow rate in the range of 5 to 15 BV/h. It indicated that NH4(+)-N from the effluents of biological treatment processes can be removed by usage of the domestic natural zeolite.
- Miale JN, Chen NY, Wisz PB, J. Catal., 6, 278 (1966)
- Warshaver VE, Klaptosov VF, Zeltser YI, "Application of Zeolites in Catalysis", John Wiley and Sons, New York (1986)
- Tompson HS, Roy J, Agr. Soc. Engl., 11 (1950)
- Eichhorn H, Poggendorf, Ann. Phys. Chem., 105 (1958)
- Park JB, Dissertation, Dong-a University (1984)
- Oh JK, Dissertation, Dong-a University (1986)
- Kim BH, Dissertation, Hanyang University (1987)
- Kim SS, Dissertation, Kyungpook National University (1990)
- Jorgensen SE, Libor E, Water Res., 13, 159 (1979)
- Jorgensen SE, Water Res., 10, 213 (1975)
- Minato H, Stud. Surf. Sci. Catal., 24, 513 (1985)
- Dryden HT, Weatherley LR, Aquacult. Eng., 6, 339 (1987)
- Ames LL, Proc. 13th Pacific Northwest Indust. Wastewater Conf., Washingson State University, Pullman, WA, USA (1967)
- Barrer RM, Papadopoulos, J. Inforgan Nucl. Chem., 28, 629 (1967)
- Barrer RM, Townsend RP, J. Chem. Soc.-Faraday Trans., 72, 2650 (1976)
- Skudder AJ, Ph.D. Dissertation, Cambridge University (1992)
- Cridland M, Ph.D. Dissertation, Cambridge University (1989)
- Langella A, Pansini M, Cappelletti P, de Gennaro B, de Gennaro M, Colella C, Microporous Mesoporous Mater., 37, 337 (2000)