화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.11, No.3, 255-263, September, 1999
Blends containing two thermotropic liquid crystalline polymers: Effects of transesterification on miscibility and rheology
E-mail:
Blends of two thermotropic liquid crystalline polymers, HX2000 and Vectra A950, were prepared by melt blending. Effects of transesterification on these blends are investigated by comparing properties of the blends with and without the addition of an inhibitor, in terms of blend miscibility and rheology. Both the uninhibited and inhibited blends are found to be largely immiscible with very limited miscibility in HX2000-rich phase. No strong evidence indicates the occurrence of transesterification in the blends in the solid state. Dynamic rheological behaviour, such as shear storage modulus (G') and shear loss modulus(G") as a function of frequency, of the blends are interpreted by a three-zone model. HX2000 shows terminal-zone and plateau-zone behavior, whilst Vectra A950 shows plateau-zone and the transition-zone behavior. The uninhibited blends show plateau-zone behaviour up to 50% Vectra A950 content and the inhibited blends show plateau-zone behaviour up to 60% Vectra A950 content. Compositional dependence of the complex viscosities of the uninhibited and inhibited blends displayed positive deviations from additivity, which is a characteristic feature for the immiscible thermoplastic blends. When under steady shear, both the uninhibited and inhibited blends show shear thinning behaviour and their viscosities decrease monotonically with the addition of Vectra A950. Compositional dependence of the steady shear viscosities of the two sets of blends displayed negative deviations from additivity and the uninhibited blends were more viscous than the inhibited blends for the full composition range. Although limited agreement with the Cox-Merz rule is found for the inhibited blends, these two sets of blends, in general, do not follow the rule due to their liquid crystalline order and two-phase morphology. Despite being immiscible blends, transesterification, such as polymerization, in the blends might occur during the rheological characterization, supported by the facts that uninhibited blends show HX2000-dominant behaviour at lower vectra A950 content and are more viscous than the inhibited blends. The addition of transesterification inhibitor in such blends is advised if only physical mixing is desired.
  1. Berry D, Kenig S, Siegmann A, Polym. Eng. Sci., 31, 451 (1991) 
  2. Billard J, Blumstein A, Vilasagar S, Mol. Cryst. Liq. Cryst., 72, 163 (1982)
  3. Bretas RE, Collias D, Baird DG, Polym. Eng. Sci., 34(19), 1492 (1994) 
  4. Cheung MF, Carduner KR, Golovoy A, van Oene H, J. Appl. Polym. Sci., 40, 977 (1990) 
  5. Cocchini F, Nobile MR, Acuerno D, J. Rheol., 37, 1171 (1991)
  6. DeMeuse MT, Jaffe M, Mol. Cryst. Liq. Cryst., 157, 535 (1988)
  7. Demeuse MT, Jaffe M, R.A. Weiss and C.K. Ober (Eds.) Liquid Crystalline Polymers, ACS Symposium Series, Washington, 435, 439 (1990)
  8. DeMeuse MT, Jaffe M, Polym. Adv. Technol., 1, 81 (1990) 
  9. Gillmor JR, Colby RH, Hall E, Ober CK, J. Rheol., 38(5), 1623 (1994) 
  10. Gotsis AD, Baird DG, J. Rheol., 29, 539 (1985) 
  11. Hsiao BS, Stein RS, J. Polym. Sci. B: Polym. Phys., 28, 1571 (1990) 
  12. Hsieh TT, Tiu C, Hsieh KH, Simon GP, Korea Polym. J., 6(1), 44 (1998)
  13. Hsieh TT, Tiu C, Simon GP, Wu RY, J. Non-Newton. Fluid Mech., 86(1), 15 (1999) 
  14. Hsieh TT, unpublished data
  15. Ferry JD, Viscoelastic Properties of Polymers, Wiley, New York, 369 (1989)
  16. Jin JI, Choi EJ, Lee KY, Polym. J., 18, 99 (1986) 
  17. Kalika DS, Nuel L, Denn MM, J. Rheol., 33, 1059 (1989) 
  18. Kenig S, Demeuse MT, Jaffe M, Polym. Adv. Technol., 2, 25 (1991) 
  19. Kim SS, Han CD, Polymer, 35(1), 93 (1994) 
  20. Kugler J, Gilmer JW, Wiswe D, Zachmann HG, Hahn K, Fischer EW, Macromolecules, 20, 1116 (1987) 
  21. Lee SY, Kim SC, J. Appl. Polym. Sci., 67(12), 2001 (1998) 
  22. Lin YG, Winter HH, Polym. Eng. Sci., 37, 773 (1992) 
  23. MacDonald WA, McLenaghan ADW, LcLean G, Richards RW, King SM, Macromolecules, 24, 6164 (1991) 
  24. Magagnini P, F.P. La Mantia (Ed.), Thermotropic Liquid Crystalline Polymer Blends, Technomic Publishing, Lancaster, Ch. 1 (1993)
  25. Porter RS, Wang LH, Polymer, 33, 2019 (1992) 
  26. Porter RS, Jonza JM, Kimura M, Desper CR, George ER, Polym. Eng. Sci., 29, 55 (1989) 
  27. Roetting O, Hinrichsen G, Adv. Polym. Technol., 13(1), 57 (1994) 
  28. Sackmann H, Demus D, Fort. d. Chem. Forsch., 12, 369 (1969)
  29. Shin BY, Chung IJ, Ki, Kim BS, Polym. Eng. Sci., 34(12), 949 (1994) 
  30. Wissbrun KF, Brit. Polym. J., Dec., 163 (1980)
  31. Xanthos M, Tan V, Ponnusamy A, Polym. Eng. Sci., 37(6), 1102 (1997) 
  32. Yoo YD, Kim SC, Polym. Bull., 18, 247 (1987)
  33. Yoshikawa K, Molnar A, Eisenberg A, Polym. Eng. Sci., 34(13), 1056 (1994)