화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.50, No.5, 587-597, 1996
Effects of Simulated Microgravity on du-145 Human Prostate Carcinoma-Cells
The high aspect rotating-wall vessel (HARV) was recently designed by NASA to cultivate animal cells in an environment that simulates microgravity. This work examines the effects of HARV cultivation on DU 145 human prostate carcinoma cells. In the HARV, these prostate cells grew in suspension on Cytodex-3 microcarrier beads to form bead aggregates with extensive three-dimensional growth between beads and on the aggregate surface. HARV and spinner-flask control cultures of DU 145 cells had similar doubling times, but the former was characterized by a higher percentage of G(1)-phase cells, larger bead aggregates, enhanced development of filopodia and microvilli-like structures on the aggregate surface, and stronger staining for select cytoskeletal proteins (cytokeratins 8 and 18, actin, and vimentin). When compared with static controls grown in a T-flask and Transwell insert, HARV cultures grew more slowly and differences in the cell cycle and immunostaining became more pronounced. These results suggest that HARV cultivation produced a culture that was less aggressive from the perspective of proliferation, more differentiated and less pliant than any of the three control cultures examined in this work. Possible factors effecting this change are discussed including turbulence and three-dimensional growth.