- Previous Article
- Next Article
- Table of Contents
Transport in Porous Media, Vol.36, No.1, 1-21, 1999
A quasilinear based procedure for saturated unsaturated water movement in soils
The quasilinear form of Richards' equation for one-dimensional unsaturated flow in soils can be readily solved for a wide variety of conditions. However, it cannot explain saturated/unsaturated flow and the constant diffusivity assumption, used to linearise the transient quasilinear equation, can introduce significant error. This paper presents a quasi-analytical solution to transient saturated/unsaturated flow based on the quasilinear equation, with saturated flow explained by a transformed Darcy's equation. The procedure presented is based on the modified finite analytic method. With this approach, the problem domain is divided into elements, with the element equations being solutions to a constant coefficient form of the governing partial differential equation. While the element equations are based on a constant diffusivity assumption, transient diffusivity behaviour is incorporated by time stepping. Profile heterogeneity can be incorporated into the procedure by allowing flow properties to vary from element to element. Two procedures are presented for the temporal solution; a Laplace transform procedure and a finite difference scheme. An advantage of the Laplace transform procedure is the ability to incorporate transient boundary condition behaviour directly into the analytical solutions. The scheme is shown to work well for two different flow problems, for three soil types. The technique presented can yield results of high accuracy if the spatial discretisation is sufficient, or alternatively can produce approximate solutions with low computational overheads by using large sized elements. Error was shown to be stable, linearly related to element size.