화학공학소재연구정보센터
Transport in Porous Media, Vol.35, No.3, 375-394, 1999
Modeling variable density flow and solute transport in porous medium: 2. Re-evaluation of the salt dome flow problem
Case 5, Level 1 of the international HYDROCOIN groundwater flow modeling project is an example of idealized flow over a salt dome. The groundwater flow is strongly coupled to solute transport since density variations in this example are large (20%). Several independent teams simulated this problem using different models. Results obtained by different codes can be contradictory. We develop a new numerical model based on the mixed hybrid finite elements approximation for flow, which provides a good approximation of the velocity, and the discontinuous finite elements approximation to solve the advection equation, which gives a good approximation of concentration even when the dispersion tensor is very small. We use the new numerical model to simulate the salt dome flow problem. In this paper we study the effect of molecular diffusion and we compare linear and non-linear dispersion equations. We show the importance of the discretization of the boundary condition on the extent of recirculation and the final salt distribution. We study also the salt dome flow problem with a more realistic dispersion (very small dispersion tensor). Our results are different to prior works with regard to the magnitude of recirculation and the final concentration distribution. In all cases, we obtain recirculation in the lower part of the domain, even for only dispersive fluxes at the boundary. When the dispersion tensor becomes very small, the magnitude of recirculation is small. Swept forward displacement could be reproduced by using finite difference method to compute the dispersive fluxes instead of mixed hybrid finite elements.