HWAHAK KONGHAK, Vol.18, No.4, 239-248, August, 1980
충전물의 표면갱신율과 유효계면 면적
Fractional Rate of Surface Renewal and the Effective Interfacial Area of Packing Materials
초록
충전탑내의 흡수현상과 충전물의 기하학적 형태가 흡수현상에 미치는 영향을 규명하기 위하여 K2CO3-KHCO3 완충용액에 NaOCl을 촉매로 사용하여 CO2를 흡수시키는 pseudo-first order reaction이 이용되었다. 실험에 사용된 충전물로는 폴리 프로필렌으로 제작된 1/4〃, 3/8〃, 1/2〃의 half Raschig ring과 half square가 이용되었다.
kL 및 α를 구하기 위하여 Danckwerts plot method를 이용했으며, 표면갱신율과 H.T.U. 및 α에 대하여 다음과 같은 경험 및 반경험식을 얻었다.
S = 1.35V0.385 (αt/(1-ε)2)
JP = 0.03(Re)-0.87(αt․d)1/2 / (1-ε)2
α/αt = 0.203 Re․Jp
여기서 Jp는 아래와 같이 정의된 factor이다.
[(Sc)1/2(Gr)-1/6(d/HL)]3/2 ≡ Jp
위의 식들은 다른 문헌의 데이터들과 비교 검토되었고 비교적 잘 일치됨을 알 수 있었다.
kL 및 α를 구하기 위하여 Danckwerts plot method를 이용했으며, 표면갱신율과 H.T.U. 및 α에 대하여 다음과 같은 경험 및 반경험식을 얻었다.
S = 1.35V0.385 (αt/(1-ε)2)
JP = 0.03(Re)-0.87(αt․d)1/2 / (1-ε)2
α/αt = 0.203 Re․Jp
여기서 Jp는 아래와 같이 정의된 factor이다.
[(Sc)1/2(Gr)-1/6(d/HL)]3/2 ≡ Jp
위의 식들은 다른 문헌의 데이터들과 비교 검토되었고 비교적 잘 일치됨을 알 수 있었다.
In order to predict the performance of a packed column and the effect of the shape of various packing materials on the performance, a system, where carbon dioxide is absorbed chemically into the K2CO3-KHCO3 buffer solution containing NaOCl as catalyst, was employed for the study. In this experiment, 1/4", 3/8", 1/2"-half Raschig ring and half square made of poly-propylene were used as packing materials.
kL and α were determined from experimental data by Danckwerts-plot method. The empirical and semi-empirical equations for the fractional rate of surface renewal, height of transfer unit and effective interfacial area were obtained as ;
S = 1.35V0.385 (αt/(1-ε)2)
JP = 0.03(Re)-0.87(αt․d)1/2 / (1-ε)2
α/αt = 0.203 Re․Jp
where Jp is defined as
[(Sc)1/2(Gr)-1/6(d/HL)]3/2 ≡ Jp
These equations were examined with the data from other investigators as well as this work and found good agreements between them.
kL and α were determined from experimental data by Danckwerts-plot method. The empirical and semi-empirical equations for the fractional rate of surface renewal, height of transfer unit and effective interfacial area were obtained as ;
S = 1.35V0.385 (αt/(1-ε)2)
JP = 0.03(Re)-0.87(αt․d)1/2 / (1-ε)2
α/αt = 0.203 Re․Jp
where Jp is defined as
[(Sc)1/2(Gr)-1/6(d/HL)]3/2 ≡ Jp
These equations were examined with the data from other investigators as well as this work and found good agreements between them.