화학공학소재연구정보센터
Thin Solid Films, Vol.287, No.1-2, 8-15, 1996
Microstructure and Physical-Properties of Iron Carbide Films Formed by Plasma-Enhanced Chemical-Vapor-Deposition
We report the structure and properties of iron-containing films deposited on glass substrates maintained at temperatures between 200 and 500 degrees C. The films investigated were Fe3O4, Fe7C3, Fe3C, and alpha-Fe, deposited at substrate temperatures of 200, 300, 400 and 500 degrees C, respectively. The measured SEM grain sizes from these 200-700 nm thick films were in the 50-350 nm range. X-ray diffraction and scanning electron microscopy show larger grains and increased crystallinity in the films deposited at higher substrate temperatures. The larger grain sizes and increased crystallinity are consequences of bulk diffusion and surface recrystallization. The sheet conductivities of the films increase with increasing film deposition temperature, due to coarser grain structures and higher iron to carbon ratios in the higher temperature films. The phases remain unchanged after annealing at 400 degrees C for 4 h. X-ray diffraction and scanning electron microscopy show evidence of bulk rearrangement and a reduction of thickness in the annealed films.