Solar Energy, Vol.66, No.4, 277-289, 1999
Aeolian dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance
Wind tunnel experiments were conducted to investigate the effect of wind velocity and airborne dust concentration on the drop of photovoltaic (PV) cell performance caused by dust accumulation on such cells. Performance drop was investigated at four wind velocities and four dust concentrations. I-V characteristics were determined for various intensities of cell pollution. The evolutions of the short circuit current, the open circuit voltage, the maximum power, the reduction of solar intensity received by the cells, and the fill factor variation with increasing cell pollution were examined. The deposition (and accumulation) of fine aeolian dust on PV cells significantly affects the performance of such cells. Wind velocity has an important impact on cell performance drop, since the drop is larger in high winds than in low winds. However, the wind also affects the sedimentological structure of the dust coating on the cell, resulting in a higher transmittance (of light) for coatings created during high winds. The wind tunnel experiments indicate that the former effect is more important than the latter, which means that, in general, the drop in PV cell performance due to dust accumulation is larger as wind speed increases. Airborne dust concentration also affects the drop in PV cell performance, since high dust concentrations lead to a higher accumulation on the cell. Contrary to wind speed, airborne dust concentration does not seem to affect the sedimentological structure of dust coatings (with respect to light transmittance) on PV cells.
Keywords:TUNNEL EXPERIMENTS;EOLIAN DEPOSITION;ATMOSPHERIC DUST;NEGEVDESERT;HILLS;ACCUMULATION;DEGRADATION