화학공학소재연구정보센터
Solar Energy, Vol.56, No.3, 285-300, 1996
Two-stage concentrator permitting concentration factors up to 300X with one-axis tracking
Economic operation of high-efficiency concentrator solar cells requires solar concentration ratios which up to now can only be achieved with two-axis tracking. In this paper we present a two-stage concentrator approaching concentration ratios up to 300X while being tracked around only one polar axis. Its principle is as follows: a parabolic trough focuses the direct solar radiation onto a line parallel to the polar tracking axis. The half rim angle of this first concentrating stage is chosen to be equal to the sun's maximum declination of 23.5 degrees. The second stage consists of a row of dielectric, nonimaging 3-D-concentrators, which couple the concentrated light directly into square solar cells. In contrast to linear secondaries the 3-D-secondaries make use of the limited divergence of +/- 23.5 degrees in the NS-direction to achieve additional concentration. The performance of the system depends sensitively on how well the angular acceptance characteristic of the second stage matches with the square-shaped angular irradiance distribution in the focal line of the parabolic trough. A new concentrator profile has been found that exhibits an almost ideal square acceptance characteristic with a very sharp cut-off. A prototype two-stage concentrator has been constructed with a total geometrical concentration of 214X. In outdoor measurements a total optical efficiency of 77.5% was obtained.