Automatica, Vol.30, No.4, 707-717, 1994
State-Space Interpretation of Model-Predictive Control
A model predictive control technique based on a steP response model is developed using state estimation techniques. The standard step response model is extended so that integrating systems can be treated within the same framework. Based on the modified step response model, it is shown how the state estimation techniques from stochastic optimal control can be used to construct the optimal prediction vector without introducing significant additional numerical complexity. In the case of integrated or double integrated white noise disturbances filtered through first-order dynamics and white measurement noise, the optimal filter gain is parametrized explicitly in terms of a single parameter between 0 and 1, thus removing the requirement for solving a Riccati equation and equipping the control system with useful on-line tuning parameters. Parallels are drawn to the existing MPC techniques such as Dynamic Matrix Control (DMC), Internal Model Control (IMC) and Generalized Predictive Control (GPC).