화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.53, No.6, 754-762, 2000
Denitrification with methane as electron donor in oxygen-limited bioreactors
The microbial population from a reactor using methane as electron donor for denitrification under microaerophilic conditions was analyzed. High numbers of aerobic methanotrophic bacteria (3 10(7) cells/ml) and high numbers of acetate-utilizing denitrifying bacteria (2 10(7) cells/ml) were detected, but only very low numbers of methanol-degrading denitrifying bacteria (4 10(4) cells/ml) were counted. Two abundant acetate-degrading denitrifiers were isolated which, based on 16S rRNA analysis, were closely related to Mesorhizobium plurifarium (98.4% sequence similarity) and a Stenotrophomonas sp. (99.1% sequence similarity). A methanol-degrading denitrifying bacterium isolated from the bioreactor morphologically resembled Hyphomicrobium sp. and was moderately related to H. vulgare (93.5% sequence similarity). The initial characterization of the most abundant methanotrophic bacterium indicated that it belongs to class II of the methanotrophs. "In vivo" C-13-NMR with concentrated cell suspensions showed that this methanotroph produced acetate under oxygen limitation. The microbial composition of reactor material together with the NMR experiments suggest that in the reactor methanotrophs excrete acetate, which serves as the direct electron donor for denitrification.