Applied Microbiology and Biotechnology, Vol.53, No.1, 75-80, 1999
Metabolism of 2,4,6-trinitrotoluene by the white-rot fungus Bjerkandera adusta DSM 3375 depends on cytochrome P-450
Degradation of 2,4,6-trinitrotoluene (TNT) by the white-rot fungus Bjerkandera adusta DSM 3375 was studied in relation to extracellular ligninolytic activities. The Mn(II)-dependent peroxidase, the only ligninolytic enzyme detectable, reached a maximum activity of 600 +/- 159 U/l after incubation in mineral medium with a sufficient nitrogen source. In contrast, the highest extent of [C-14]TNT mineralization was detected in malt extract broth, so that the ability of B. adusta to mineralize TNT did not parallel ligninolytic activity. The microsomal fraction of cells grown in the presence of TNT was found to contain 11 pmol cytochrome P-450/mg protein. In cells grown without TNT, no microsomal cytochrome P-450 could be found, instead, 14 pmol P-450/mg protein was present in the cytosolic fraction of these cells. Cytochrome P-450 apparently affected the TNT metabolism, as shown by inhibitory studies. Addition of the cytochrome P-450 inhibitor piperonyl butoxide diminished the (CO2)-C-14 release from 21% to 0.9%, as determined after 23 days of incubation, while 1-aminobenzotriazole and metyrapone decreased the mineralization to 8.6% and 6.3% respectively. Mass-balance analysis of TNT degradation in liquid cultures revealed that, by inhibition of cytochrome P-450, the TNT-derived radioactivity associated with biomass and with polar, water-soluble metabolites decreased from 93.9% to 15.0% and the fraction of radiolabelled metabolites extractable with organic solvents fell to 92.6%. The TNT metabolites of this fraction were identified as aminodinitrotoluenes, indicating that this initial transformation product of TNT may function as a substrate for cytochrome-P-450-dependent reactions in B. adusta.
Keywords:PHANEROCHAETE-CHRYSOSPORIUM;LIGNIN PEROXIDASE;NITROAROMATICCOMPOUNDS;PLEUROTUS-OSTREATUS;DEGRADATION;BIODEGRADATION;TNT;TRANSFORMATION;HYDROXYLATION;PHENANTHRENE