화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.52, No.3, 380-385, 1999
Substrate specificity and stereospecificity of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14; an enzyme showing sequential and enantioconvergent substrate conversion
Limonene-1,2-epoxide hydrolase (LEH) from Rhodococcus erythropolis DCL14, an enzyme involved in the limonene degradation pathway of this microlorganism, has a narrow substrate specificity. Of the compounds tested, the natural substrate, limonene-1,2-epoxide, and several alicyclic and 2-methyl-1,2-epoxides (e.g. 1-methylcyclohexene oxide and indene oxide), were substrates for the enzyme. When LEH was incubated with a diastereomeric mixture of limonene-1,2-epoxide, the sequential hydrolysis of first the (1R,2S)- and then the (1S,2R)-isomer was observed. The hydrolysis of (4R)- and (4S)-limonene-1,2-epoxide resulted in, respectively, (1S,2S,4R)- and (1R,2R,4S)-limonene-1,2-diol as the sole product with a diastereomeric excess of over 98%. With all other substrates, LEH showed moderate to low enantioselectivities (E ratios between 34 and 3).