Rheologica Acta, Vol.33, No.6, 506-516, 1994
ASSESSMENT OF NONLINEAR STRAIN MEASURES FOR EXTENSIONAL AND SHEARING FLOWS OF POLYMER MELTS
From stress-strain experiments in extensional and shearing flows, nonlinear strain measures and effective damping functions are derived for a polyisobutylene melt. The strain measures determined in planar extensional flow and in simple shear flow coincide. Experimental results are compared with predictions of two molecular theories, the Doi-Edwards model and the molecular stress function approach of Wagner and Schaeffer. Discrepancies between theories and experiment lead to a reconsideration of the classification of extensional flows. The symmetry of the flow field is identified and quantified as an important parameter influencing the strain measure, and a unifying strain measure for general extensional and shearing flows of polymer melts is presented.